Effect of Porcine Antibacterial Peptide against Avian Pathogenic Bacteria
-
摘要:
目的 明确猪源抗菌肽对禽源沙门氏菌和大肠杆菌的抑菌作用,为新型抗菌药物的研发和猪源抗菌肽的生产应用提供科学依据。 方法 以猪源抗菌肽为材料,采用液体培养基抑制测定法,结合体内外试验,分别测定猪源抗菌肽对禽源沙门氏菌和禽源大肠杆菌的抗菌活力值,研究其体内外抑菌作用。 结果 对不同浓度的抗菌肽抗菌活力值的测定结果表明,与0.5、0.2和0.1 mg·mL-1的猪源抗菌肽相比较,1.0 mg·mL-1的抗菌肽对含有106 CFU·mL-1的菌液抑菌效果最好;与阿莫西林、红霉素、四环素等15种抗生素相比较,猪源抗菌肽对禽源沙门氏菌FJS13株和禽源大肠杆菌FJE61株的抑菌圈最大,其抗菌效果最好;抗菌肽在雏鸡体内的抑菌试验表明,攻毒鸡皮下注射猪源抗菌肽有利于提高雏鸡的存活率,在雏鸡体内也具有一定的抑菌作用。 结论 猪源抗菌肽可用于抑制禽源沙门氏菌和大肠杆菌。 Abstract:Objective Activity of porcine antibacterial peptides (PAP) against avian Salmonella and Escherichia coli was determined for drug development. Method Inhibitive activity of PAP on avian pathogens was studied in vitro on an liquid medium and by an in vivo test. Results PAP at a concentration of 1.0 mg·mL-1 showed a higher bacteriostatic effect on the solution contaning 106 CFU·mL-1 of the pathogens than at 0.5, 0.2 or 0.1 mg·mL-1. Compared with 15 antibiotics, such as amoxicillin, erythromycin, tetracycline, etc., PAP induced the largest inhibition zone on the growth of avian Salmonella FJS13 and E. coli FJE61. In a challenging test on chicken, the PAP administration improved the survival rate of the subcutaneous injected birds. Conclusion PAP could be used as a bioagent to combat the infection on chickens by avian Salmonella and E. coli. -
表 1 试验分组及给药
Table 1. Experimental groups and drug administration
组别
Group数量
Quantity/只攻毒Attack 24 h后治疗24 h Post treatment A B C D E 沙门氏菌治疗组Salmonella treatment group 15 - + - + - 大肠杆菌治疗组E. coli treatment group 15 - - + + - 沙门氏菌模型组Salmonella model group 15 - + - - + 大肠杆菌模型组E. coli model group 15 - - + - + 对照组一Control group 1 15 + - - - + 对照组二Control group 2 15 + - - + - 注:A为生理盐水,B为沙门氏菌,C为大肠杆菌,D为猪源抗菌肽,E为生理盐水。“+”表示注射;“-”表示不注射。
Note:A.Saline,B.salmonella,C.E.coli,D.Porcine antibacterial peptide,E.Saline. “+” means injection; “-” means not injection.表 2 不同质量浓度抗菌肽对禽源沙门氏菌的抗菌活力值U
Table 2. Antibacterial activity (U) of PAP in different concentrations on Salmonella
质量浓度
Concentration
/(mg·mL-1)1 h 2 h 3 h 4 h 6 h 8 h 12 h 16 h 20 h 24 h 1.0 0.226±0.003a 0.292±0.005a 0.261±0.004a 0.271±0.006a 0.356±0.004a 0.466±0.004a 0.557±0.003a 0.685±0.005a 0.706±0.004a 0.696±0.005a 0.5 0.147±0.003b 0.276±0.004a 0.227±0.005b 0.274±0.004a 0.363±0.003a 0.473±0.005a 0.558±0.005a 0.675±0.004a 0.256±0.004c 0.169±0.004d 0.2 0.045±0.003c 0.155±0.005c 0.066±0.002d 0.034±0.005c 0.163±0.004b 0.176±0.005b 0.173±0.003b 0.155±0.005b 0.236±0.005c 0.233±0.004c 0.1 0.101±0.003b 0.207±0.005b 0.153±0.004c 0.108±0.003b 0.153±0.005b 0.097±0.005c 0.068±0.004c 0.059±0.004c 0.341±0.004b 0.323±0.006b 注:采用Duncan′s multiple range test方法分析,同列数据后不同字母表示差异显著(P<0.05)。表 3同。
Note:Duncan′s multiple range test method was used to analy, different letters of the same column indicates a significant difference (P<0.05).The same as Table 3.表 3 不同质量浓度抗菌肽对禽源大肠杆菌的抗菌活力值(U)
Table 3. Antibacterial activity (U) of PAP in different concentrations on E. coli
质量浓度
Concentration
/(mg·mL-1)1 h 2 h 3 h 4 h 6 h 8 h 12 h 16 h 20 h 24 h 1.0 0.243±0.004a 0.333±0.004a 0.312±0.004a 0.389±0.0052a 0.445±0.004a 0.502±0.004a 0.604±0.004a 0.709±0.004a 0.697±0.003a 0.689±0.005a 0.5 0.129±0.005b 0.313±0.004a 0.304±0.004a 0.382±0.0053a 0.413±0.004a 0.499±0.004a 0.595±0.005a 0.699±0.005a 0.335±0.006b 0.241±0.005b 0.2 0.075±0.004c 0.173±0.005b 0.172±0.004b 0.161±0.0041b 0.158±0.005b 0.165±0.004b 0.191±0.004b 0.122±0.005b 0.112±0.005c 0.132±0.005c 0.1 0.130±0.003b 0.106±0.005c 0.121±0.005c 0.139±0.0042b 0.141±0.004b 0.072±0.005c 0.072±0.005c 0.061±0.004c 0.352±0.004b 0.294±0.005b 表 4 抗菌肽对禽源沙门氏菌和大肠杆菌的抑菌试验结果
Table 4. Antibacterial test results of PAP on Salmonella and E. coli
药敏纸片/菌种
Drug sensitive paper/strain沙门氏菌Salmonella 大肠杆菌Escherichia Coli 抑菌圈直径Inhibition zone diameter/mm 敏感性Sensitivity determination 抑菌圈直径Inhibition zone diameter/mm 敏感性Sensitivity determination 阿莫西林Amoxicillin 10 R 15 M 丁胺卡那霉素Amikacin 12 R 10 R 氟哌酸Norfloxacin 23 S 6 R 红霉素Eryphilin 8 R 6 R 卡那霉素Kanamycin 13 R 6 R 利福平Rifampin 9 R 20 S 链霉素Streptomycin 8 R 8 R 强力霉素Doxycycline 16 M 12 M 庆大霉素Gentamicin 12 M 12 M 壮观霉素Spectamycin 10 M 8 R 新霉素Neomycin 13 M 6 R 四环素Tetracycline 8 R 8 R 林可霉素Lincomycin 6 R 8 R 克林霉素Clindamycin 6 R 8 R 青霉素Penicillin 12 R 8 R 抗菌肽Antibacterial peptide 30 - 28 - 注:S为敏感,M为中介,R为耐受。
Note:S is sensitive, M is intermediary, and R is resistant.表 5 不同菌液用量处理试验雏鸡的死亡情况
Table 5. Deaths of experimental chickens in groups with different bacterial conlentrations
菌株
Strain菌液用量
Bacterial concentration/(CFU·mL-1)剂量 Dose
/(mL·只-1)死亡率
Mortality rate/%沙门氏菌
Salmonella1.0×104 0.5 0.0 1.0×105 0.5 40.0 1.0×106 0.5 53.3 1.0×107 0.5 66.7 1.0×108 0.5 86.7 1.0×109 0.5 100.0 大肠杆菌
E.coli1.0×104 0.5 0.0 1.0×105 0.5 33.3 1.0×106 0.5 46.7 1.0×107 0.5 60.0 1.0×108 0.5 80.0 1.0×109 0.5 100.0 表 6 各组试验雏鸡的存活情况
Table 6. Survival of chickens in each group
试验分组
Test group数量
Quantity/只存活数
Survival number/只存活率
Survival rate/%死亡率
Rate of death/%沙门氏菌治疗组Salmonella treatment group 15 12 80.00 20.00 大肠杆菌治疗组E.coli treatment group 15 13 86.67 13.33 沙门氏菌模型组Salmonella model group 15 8 53.33 46.67 大肠杆菌模型组E. coli model group 15 7 46.67 53.33 对照组一Control group 1 15 15 100 0.0 对照组二Control group 2 15 15 100 0.0 -
[1] 刘诚, 黎满香, 卢帅, 等.抗菌肽研究进展[J].动物医学进展, 2011, 32(3):94-99. doi: 10.3969/j.issn.1007-5038.2011.03.021LIU C, LI M X, LU S, et al. Progress in antibacterial peptides[J]. Progress in Animal Medicine, 2011, 32(3):94-99.(in Chinese) doi: 10.3969/j.issn.1007-5038.2011.03.021 [2] 魏中琴, 高雅婷, 马奔科, 等.抗菌肽的研究进展[J].黑龙江医药, 2015, 10(1):1-5. doi: 10.3969/j.issn.1008-0104.2015.01.001WEI Z Q, GAO Y T, MA B K, et al. Research progress of antimicrobial peptides[J]. Heilongjiang Medicine, 2015, 10(1):1-5.(in Chinese) doi: 10.3969/j.issn.1008-0104.2015.01.001 [3] 韩新燕, 汪以真, 许梓荣.哺乳动物抗菌肽的研究进展[J].中国兽医学报, 2002, 15(2):205-208. http://d.old.wanfangdata.com.cn/Periodical/zgsyxb200202035HAN X Y, WANG Y Z, XU Z R. Research progress of mammalian antimicrobial peptides[J]. Chinese Journal of Veterinary Medicine. 2002, 15(2):205-208.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgsyxb200202035 [4] ANDREAS R KOCZULLA. Robert Bals.Antimicrobial Peptides:current status and therapeutic potential[J]. Drugs, 2003, 63(4):389-460. http://cn.bing.com/academic/profile?id=cf38f64247c6e55a806d35e180b65cac&encoded=0&v=paper_preview&mkt=zh-cn [5] 马卫明, 佘锐萍, 彭芳珍, 等.猪小肠抗菌肽的提取及部分生物学活性研究[J].科学技术与工程, 2004, 16(3):202-205. doi: 10.3969/j.issn.1671-1815.2004.03.010MA W M, QI R P, PENG F Z, et al. Extraction and Biological Activity of Porcine Small Intestinal Antibacterial Peptides[J]. Science Technology and Engineering, 2004, 16(3):202-205.(in Chinese) doi: 10.3969/j.issn.1671-1815.2004.03.010 [6] 范志勇, 周定刚, 吴明夏, 等.猪小肠抗菌肽的抑菌作用研究[J].家畜生态学报, 2006, 27(6):99-101. doi: 10.3969/j.issn.1673-1182.2006.06.023FAN Z Y, ZHOU D G, WU M X, et al. Antibacterial activity of porcine intestinal antimicrobial peptides[J]. Chinese Journal of Animal Ecology, 2006, 27(6):99-101.(in Chinese) doi: 10.3969/j.issn.1673-1182.2006.06.023 [7] 高明燕, 刘爱玲, 刘建军, 等.抗菌肽RP-07的抑菌作用及其稳定性研究[J].黑龙江畜牧兽医, 2015(7):189-191. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljxmsy201504062GAO M Y, LIU A L, LIU J J, et al. Antibacterial activity and stability of antimicrobial peptide RP-07[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2015(7):189-191.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljxmsy201504062 [8] POWERS J P, HANCOCK R E. The relationship between peptide structure and antibacterial activity[J]. Peptides, 2003, 24(11):1681-1691. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM15019199 [9] 单安山, 田昊天, 邵长轩, 等.抗菌肽抗细菌机理研究进展[J].东北农业大学学报, 2018, 8(3):84-94. doi: 10.3969/j.issn.1005-9369.2018.03.010SHAN A S, TIAN H T, SHAO C X, et al. Advances in antibacterial mechanism of antibacterial peptides[J]. Journal of Northeast Agricultural University, 2018, 8(3):84-94.(in Chinese) doi: 10.3969/j.issn.1005-9369.2018.03.010 [10] MOHAN K V. Antiviral activity of selected antimicrobial peptides against vaccinia virus[J]. Antiviral Research, 2010, 86(3):306-311. doi: 10.1016/j.antiviral.2010.03.012 [11] BRADSHAW JEREMY. Cationic antimicrobial peptides:issues for potential clinical use[J]. Bio Drugs, clinicalimmunotherapeutics, biopharmaceuticals and gene therapy, 2003, 17(4):233-240. doi: 10.2165-00063030-200317040-00002/ [12] 徐磊, 刘友霖, 曾辉荣, 等.猪小肠复合抗菌肽的制备方法及用途: 中国, 201310343030.8[P].2015-08-11.XU L, LIU Y L, ZENG H R, et al. Preparation method and use of pig small intestine compound antimicrobial peptide: China, 201310343030.8[P].2015-08-11.(in Chinese) [13] Clinical and Laboratory Standards Institute(CLSI). Performance standards for antimicrobial susceptibility testing twentieth informational supplement[M]. USA, 2010. [14] 董改琳.家禽大肠杆菌致病机理与防治措施[J].畜牧兽医科学, 2018, 5(4):64. doi: 10.3969/j.issn.2096-3637.2018.04.052DONG G L. Pathogenic Mechanism and Control Measures of Escherichia Coli in Poultry[J]. Journal of Animal Husbandry and Veterinary Medicine, 2018, 5(4):64.(in Chinese) doi: 10.3969/j.issn.2096-3637.2018.04.052 [15] 朱健, 刘超群, 刘瑞奇, 等.抗菌肽免疫调节功能的研究进展[J].黑龙江畜牧兽医.2018, 24(1):77-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljxmsy201801019ZHU J, LIU C Q, LIU R Q, et al. Research progress on immunomodulatory function of antimicrobial peptides[J]. Heilongjiang Animal Husbandry and Veterinary. 2018, 24(1):77-79.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljxmsy201801019 [16] 卜艳玲.肠杆菌肽体外抑菌作用及在断奶仔猪生产中应用研究[D].沈阳: 沈阳农业大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10157-1018993044.htmBU Y L. In vitro antibacterial effect of enterobacterin and its application in weaned pig production[D]. Shenyang: Shenyang Agricultural University, 2018.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10157-1018993044.htm