Identification and Properties of Ketoacyl-coenzyme A Synthetase Gene in Primulina spinulosa
-
摘要:
目的 为进一步探讨刺齿报春苣苔酮脂酰-辅酶A合成酶基因的分子结构和功能,并为刺齿报春苣苔适应极端干旱环境提供分子依据。 方法 总RNA的提取采用改良Trizol法,通过转录组测序获得与刺齿报春苣苔(Primulina spinulosa)抗旱及应对生物胁迫反应有关的基因:酮脂酰-辅酶A合成酶基因,并运用DNAman、Finder、TMPRED、SWISS-MODEL、NetPhos2.0、SignaIP4.1等软件对序列的开放阅读框(ORF)、编码氨基酸、编码蛋白质等理化特性进行分析,并构建系统发育树。 结果 序列分析结果表明,该基因全长1 935 bp(GenBank登录号为MH543314),开放阅读框(ORF)为1 599 bp,共编码532个氨基酸,编码蛋白质的分子量为59.82 kDa,理论等电点(pI)为9.16,为亲水性蛋白,含7个跨膜区,30个可能的磷酸化位点,1个与查尔酮合成酶家族蛋白相同的保守结构域;它与同科旋蒴苣苔(Dorcoceras hygrometricum,KZV37788)的同源性高达92%,两者在系统进化树上聚为一支。 结论 酮脂酰-辅酶A合成酶基因与刺齿报春苣苔叶表面的蜡质合成有关,对植物的抗旱及应对生物胁迫发挥重要调控作用。 -
关键词:
- 刺齿报春苣苔 /
- 酮脂酰-辅酶A合成酶基因 /
- 基因序列分析
Abstract:Objective The ketoacyl-coenzyme A synthase (KCAS) gene relating to responses of Primulina spinulosa to drought and other stresses was studied based on the transcriptome sequencing. Method Total RNA of the gene was extracted by the improved Trizol method for sequencing with the established database. Physicochemical properties of the open reading frame (ORF), coding amino acids, and proteins of the gene were analyzed by DNAman, Finder, TMPRED, SWISS-MODEL, NetPhos 2.0, and SignaIP4.1. The phylogenetic tree was constructed accordingly. Results The full length of the KCAS gene was determined to be 1 935 bp (GenBank login number MH543314), ORF 1 599 bp, encoding 532 amino acids, molecular weight 59.82 kDa, and theoretical pI 9.16. It was a hydrophilic protein with 7 transmembrane regions, 30 possible phosphorylation sites, and one conservative domain similar to that of the chalcone synthase family. The homology between it and Dorcoceras hygrometricum (KZV788) was as high as 92%, and they were in a same phylogenetic tree. Conclusion The KCAS gene was postulated to relate to the leaf wax synthesis of P. spinosa and played an important role in drought resistance and biological response to stresses of the plant. -
图 8 基于氨基酸序列的酮脂酰-辅酶A合成酶系统发育树
注:Spi|c32695_g1(刺齿报春苣苔,MH543314),Dorcoceras hygrometricum(旋蒴苣苔,KZV37788),Sesamum indicum(芝麻,XP_011081956),Erythranthe guttata(水曲柳,XP_012855831),Olea europaea var. Sylvestris(油橄榄,XP_022868534),Theobroma cacao(可可,EOY30095),Helianthus annuus(向日葵,XP_021982926),Cynara cardunculus var. Scolymus(菜蓟,XP_024961571),Gossypium hirsutum(棉花,NP_001313740),Coffea canephora(中果咖啡,CDP17887),Ipomoea nil(牵牛花,XP_019167964),Herrania umbratica(乌骨草,XM_021420693),Ziziphus jujuba(枣,XP_015884557)。
Figure 8. Phylogenetic tree of KCAS based on amino acid sequence
-
[1] 张高阳, 邓接楼, 黄思齐, 等.红麻酮脂酰辅酶A合成酶(KCS)酵母双杂交诱饵载体构建及自激活检测[J].中国麻业科学, 2018(2):75-78 doi: 10.3969/j.issn.1671-3532.2018.02.006ZHANG G Y, DENG J L, HUANG S Q, et al. The Study on Self Activation of Ketoacyl-Coenzyme A Synthase in Yeast Two Hybrid Systerm of Hibiscus Cannabinus[J].Plant Fiber Sciences in China, 2018(2):75-78.(in Chinese) doi: 10.3969/j.issn.1671-3532.2018.02.006 [2] 王艳婷.一粒小麦、节节麦叶片表皮蜡质的组成及β-酮脂酰辅酶A合成酶KCS基因的克隆与功能分析[D].陕西: 西北农林科技大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10712-1015332666.htmWANG Y T.Cuticular waxes composition on the leaves of triticum monococcum and aegilops tauschⅡ and cloning and functional analysis of KCS[D].Shanxi: Northwest A & F University.2015.(in Chinese) http://cdmd.cnki.com.cn/Article/CDMD-10712-1015332666.htm [3] 吉庆勋, 刘德春, 刘勇.植物表皮蜡质合成和运输途径研究进展[J].中国农学通报, 2012(3):225-232 doi: 10.3969/j.issn.1000-6850.2012.03.041JI Q X, LIU D C, LIU Y.Advances of Plant Cuticular Wax Biosynthesis and Export Pathway[J]. Chinese Agricultural Science Bulletin, 2012(3):225-232.(in Chinese) doi: 10.3969/j.issn.1000-6850.2012.03.041 [4] CAMERON K D, TEECE M A, SMART L B.Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco[J].Plant Physiology, 2006, 140(1):176-183. doi: 10.1104/pp.105.069724 [5] BOURDENX B, BERNARD A, DOMERGUE F, et al. Overexpression of arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and influences plant response to biotic and abiotic stresses[J]. Plant Physiology, 2011, 156(1):29-45. doi: 10.1104/pp.111.172320 [6] ISLAM M A, DU H, NING J, et al. Characterization of glossy1 homologous genes in rice involved in leaf wax accumulation and drought resistance[J]. Plant Molecular Biology, 2009, 70(4):443-456. doi: 10.1007/s11103-009-9483-0 [7] 吴洪启, 罗文巧, 赵帅, 等.干旱胁迫对番茄叶片蜡质积累的影响[J].西北农林科技大学学报(自然科学版), 2017, 45(7):73-80. http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201707010WU H Q, LUO W Q, ZHAO S, et al.Effect of drought stress on wax accumulation in leaves of tomato(Lycopersicon esculentum)[J].Journal of Northwest A & F University(Natural Science Edition), 2017, 45(7):73-80.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/xbnydxxb201707010 [8] BONDADA B R, OOSTERHUIS D M, MURPH J B, et al.Effect of water stress on the epicuticular wax composition and ultrastructure of cotton (Gossypium hirsutum L.) leaf, bract, and boll[J]. Environmental and Experimental Botany, 1996, 36(1):61-69. doi: 10.1016/0098-8472(96)00128-1 [9] KIM K, PARK S H, JENKS M A. Influence of water deficit on leaf cuticular waxes of soybean[J]. International Journal of Plant Sciences, 2007, 168(3):307-316. doi: 10.1086/510496 [10] KIM K, PARK S H, JENKS M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit[J]. Journal of Plant Physiology, 2007, 164(9):1134-1143. doi: 10.1016/j.jplph.2006.07.004 [11] 汤正辉, 陈维伦, 石雷, 等.刺齿唇柱苣苔苣苔的离体快速繁殖[J].植物生理学通讯, 2004, 40(2):211 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx200402035TANG Z H, CHEN W L, SHI L, et al.In vitro Micropropagation of Chirita spinulosa[J].Plant Physiolog Communications, 2004, 40(2):211.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwslxtx200402035 [12] TAKANASHI K, SHITAN N, SUGIYAMA A, et al. Galactinol synthase gene of Coptis japonica is involved in berberine tolerance[J]. Bioscience, Biotechnology, and Biochemistry, 2008, 72(2):398-405. doi: 10.1271/bbb.70495 [13] 杜玉杰.构建分子系统树的简易方法[J].生物学通报, 2013, 48(4):4-6. doi: 10.3969/j.issn.0006-3193.2013.04.002DU Y J.A Simple Method for Constructing Molecular System Tree[J].Bulletin of Biology, 2013, 48(4):4-6.(in Chinese) doi: 10.3969/j.issn.0006-3193.2013.04.002 [14] 林世锋, 王仁刚, 任学良, 等.烟草肌醇半乳糖苷合成酶基因NtGolS1的克隆及序列分析[J].东北农业大学学报, 2012(7):113-118 http://d.old.wanfangdata.com.cn/Periodical/dbnydxxb201207024LIN S F, WANG R G, REN X L, et al.Cloning and Sequence Analysis of Tobacco Inositol Galactoside Synthase Gene NtGolS1[J].Journal of Northeast Agricultural Universi, 2012(7):113-118.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dbnydxxb201207024 [15] ZHANG JY, BROECKLING CD, SUMMER LW, et al.Heterologous expression of two Medicago truncatula putative ERF Transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance[J].Plant Molecular Biology, 2007, 64(3):265-278. doi: 10.1007/s11103-007-9150-2 [16] ZHANG JY, BROECKLING CD, BLANCAFLOR EB, et al.Over-expression of WXP1, Aputative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa(Medicago sativa)[J].Plant, 2005, 42(5):689-707. http://cn.bing.com/academic/profile?id=0ef512887474760baa0b34e10bde0473&encoded=0&v=paper_preview&mkt=zh-cn [17] 王洪峰.FCNO1、NS1和MtPHAN/MtAGO7基因在蒺藜苜蓿复叶发育中的功能研究[D].济南: 山东大学, 2018.WANG H F.Function of FCNO1, NS1 and MtPHAN/MtAGO7 Genes in Compound Leaf Development of Alfalfa Tribulus[D].Jinan: Shandong University, 2018.(in Chinese) [18] 刘玉洁, 郭丹妮, 张渝, 等.沙田柚GDSL酯酶/脂肪酶基因的鉴定及序列分析[J].江苏农业科学, 2017(11):45-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201711012LIU Y J, GUO D N, ZHANG Y, et al.Identification and Sequence Analysis of GDSL Esterase/Lipase Gene in Shatian Pomelo[J].Jiangsu Agricultural Sciences, 2017(11):45-48.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsnykx201711012 [19] 郭丹妮, 刘玉洁, 张渝, 等.沙田柚F-box蛋白基因的克隆及序列分析[J].湖北农业科学, 2016(14):3723-3726. http://d.old.wanfangdata.com.cn/Periodical/hbnykx201614046GUO D N, LIO Y J, ZHANG Y, et al.Cloning and Sequence Analysis of F-box Protein Gene of Citrus maxima (Burm.) Merr.cv.Shatian Yu.o[J].Hubei Agricultural Sciences, 2016(14):3723-3726.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hbnykx201614046 [20] 许发喜, 刘翠芳, 邹杰, 等.植物角质层对非生物逆境胁迫响应研究进展[J].中国生物工程杂志, 2010, 30(8):126-130. http://d.old.wanfangdata.com.cn/Periodical/swgcjz201008022XU F X, LIU C F, ZHOU J, et al.Research Progress in Plant Cuticle Responses to Abiotic Stresses[J].China Biotechnology, 2010, 30(8):126-130.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/swgcjz201008022 [21] 巴桑玉珍, 扎桑, 王玉林, 等.青稞新光合作用相关基因的克隆和序列分析[J].大麦与谷类科学, 2017(6):1-7. http://d.old.wanfangdata.com.cn/Periodical/dmkx201706001BA S Y Z, ZHA S, WANG Y L, et al.Cloning and Sequence Analysis of Photosynthesis-related Genes in Tibetan Hulless Barley (Hordeum vulgare L.var.nudum HK.f.)[J].Barley and Cereal Sciences, 2017(6):1-7.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/dmkx201706001 [22] 秦新民, 张渝, 刘玉洁, 等.沙田柚S-RNase基因的克隆及序列分析[J].广西师范大学学报(自然科学版), 2015(1):139-145. http://d.old.wanfangdata.com.cn/Periodical/gxsfdxxb201501023QIN X M, ZHANG Y, LIU Y J, et al.Cloning and Sequence Analysis of S-RNase Gene from Citrus grandis var.Shatinyu Hort[J].Journal of Guangxi Normal University(Natural Science Edition), 2015(1):139-145.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxsfdxxb201501023