Leaf Chlorophyll and Grain Yield of Low-gluten Wheat as Affected by Waterlogging at Grain-filling Stage
-
摘要:
目的 长江中下游弱筋小麦产区中后期涝渍害严重,研究涝害对弱筋小麦生长生理与产量的影响,为弱筋小麦生产提供依据。 方法 以扬麦13、扬麦15、扬麦22和糯小麦4个弱筋小麦品种为试验材料,采用盆钵栽培方法,研究灌浆期人工模拟涝害对小麦株高、顶三叶SPAD值及产量的影响。 结果 (1)灌浆期涝害对小麦株高无显著影响;(2)涝害后,小麦顶三叶SPAD值较对照下降,涝害时间越长,下降程度越大;不同叶位叶片涝害后下降差值差异显著,下叶位下降值大,涝害后恢复7 d,上叶位SPAD值较对照差值明显增加,涝害后下叶位叶片先受害,而后向上叶位叶片扩展;(3)小麦灌浆期涝害旗叶、倒二叶及倒三叶间较对照差值有显著差异,倒三叶SPAD值涝害指数与产量涝害指数极显著相关,且相关性最大(r=0.989 5),倒三叶叶片SPAD值为灌浆期涝害程度的指示叶位;(4)在涝害7 d胁迫下,4个弱筋小麦品种的产量均显著降低,扬麦22对涝害最敏感,涝害7 d产量较对照减少3.6 g·株-1,降幅最大,达39.4%。扬麦22和扬麦15涝害敏感期在涝害5 d以下,扬麦13和糯小麦涝害敏感期为涝害7 d;(5)不同品种灌浆期涝害对产量因子的影响不同,扬麦13属于千粒重降低型品种,糯小麦是穗粒数降低型品种,扬麦15是穗粒数和千粒重双因子降低型品种,扬麦22是有效穗、穗粒数和千粒重三因子降低型品种。 结论 灌浆期涝害对小麦株高无显著影响;用SPAD值涝害指数可以衡量灌浆期小麦涝害程度,指示叶位为倒三叶;扬麦22对涝害最敏感,涝害7 d产量降幅最大,扬麦22和扬麦15涝害敏感期在涝害5 d以下,扬麦13和糯小麦涝害敏感期为涝害7 d。 Abstract:Objective Effects of waterlogging, a serious natural disaster commonly occurring in the middle and late stages of growing season in one of the major production areas in China of middle and lower reaches of the Yangtze River, on the growth, physiology and yield of the low-gluten wheat were studied. Method SPADs of top 3 leaves and yield at grain-filling stage of 4 low-gluten wheat cultivars(i.e., Yangmai 13, Yangmai 15, Yangmai 22 and Waxy wheat)were used in a pot experimentation for the study. Result (1) Waterlogging occurred at the wheat grain-filling stage exerted little effect on the height of a plant. (2) The SPADs of the top leaves on a plant decreased after waterlogging and continued to decline with the condition prolonged. The leaves on lower part of a plant were more sensitive to the stress than those on the upper sections. The SPAD difference between control and treatment (DSPAD) further widened in 7 days of a natural recovery. Waterlogging caused damages firstly on the lower leaves, then, spread to the upper leaves. (3) DSPAD of leaves differed significantly according to their location on a plant. The SPAD of the top third leaf and the grain yield significantly correlated, with a correlation coefficient of 0.989 5, suggesting it be used as an indicator to estimate waterlogging damage at grain-filling stage. (4) After 7 d of waterlogging, the yields of all varieties declined significantly. Yangmai 22 was most sensitive to waterlogging with a decrease on yield of 3.6 g/plant or a 39.4% loss over the untreated. The tolerance threshold for Yangmai 22 and Yangmai 15 was 5 d under waterlogging, while Yangmai 13 and waxy wheat 7 d. (5) The effects brought about by waterlogging were variety-specific on yield traits at the grain-filling stage. For Yangmai 13, the reduction was mainly on the 1000-grain weight, while waxy wheat on the number of grains per spike, Yangmai 15 on both 1000-grain weight and grains per spike, and Yangmai 22 on the effective panicle, grain number per panicle as well as the 1000-grain weight. Conclusion Waterlogging at wheat grain-filling stage did not significantly affect the plant height. The SPAD of the top third leaf could be used to estimate the degree of waterlogging damage on the grain yield of a wheat plant. Yangmai 22 was the variety most susceptible to waterlogging, with a significant loss after 7 d under the stress. The tolerance of Yangmai 22 and Yangmai 15 to waterlogging had a threshold of 5 d, whereas Yangmai 13 and waxy wheat 7 d. -
Key words:
- wheat /
- waterlogging /
- grain-filling stage /
- SPAD /
- waterlogging index /
- yield
-
表 1 灌浆期涝害对弱筋小麦株高的影响
Table 1. Effect of waterlogging on plant height of low-gluten wheat at grain-filling stage
(单位/cm) 项目
Item扬麦13
Yangmai 13扬麦15
Yangmai 15扬麦22
Yangmai 22糯小麦
Waxy wheatN 78.8±1.8 70.8±1.4 80.8±4.1 77.9±5.4 F1 79.1±0.9 71.0±1.7 80.1±0.8 77.1±0.4 F2 79.5±0.2 70.7±2.4 80.4±0.5 77.1±1.8 F3 79.2±0.9 70.3±0.3 78.8±2.1 76.6±0.1 表 2 淹水处理后小麦顶三叶叶片SPAD值与对照差值方差分析
Table 2. Analysis of variance on differences of DSPAD
处理
Treatment项目
Item因子
Factor均值
Mean value平方和
Square sumdf 均方
Mean squareF值
F valueP值
P valueS1
处理间
Among treatmentsF1 2.8 1046.2 2 523.1 31.2 0.0001 F2 5.6 F3 10.3
品种间
Among varietiesR1 4.5 443.3 3 147.8 8.8 0.0001 R2 6.1 R3 9.6 R4 4.8
叶位间
Among leaf locationsL1 4.4 316.3 2 158.2 9.4 0.0002 L2 5.8 L3 8.5 S2 处理间
Among treatmentsF1 6.5 851.1 2 425.5 8 0.0007 F2 11.3 F3 13.1 品种间
Among varietiesR1 8.6 224.2 3 74.7 1.4 0.2461 R2 11.3 R3 12.1 R4 9.2 叶位间
Among leaf locationsL1 8.7 424.6 2 212.3 4 0.0223 L2 13.1 L3 9.1 表 3 SPAD值涝害指数与产量涝害指数相关性分析
Table 3. Correlation between waterlogging indexing SPAD and yield
项目
ItemRIL1SPAD RIL2SPAD RIL3SPAD RIY RIL1SPAD 1.0000 RIL2SPAD 0.9998** 1.0000 RIL3SPAD 0.9984** 0.9970** 1.0000 RIY 0.9801** 0.9762** 0.9895** 1.0000 注:RIL1SPAD、RIL2SPAD、RIL3SPAD分别表示旗叶、倒二叶、倒三叶的SPAD值涝害指数,RIY为产量涝害指数,**表示在0.01水平上的显著水平。
Note: RIL1SPAD:waterlogging index on top 1st leaf; RIL2SPAD:waterlogging index on top 2nd leaf; RIL3SPAD:waterlogging index on top 3rd leaf; RIY:waterlogging indexing grain yield; ** indicates significant difference at 0.01 level.表 4 涝害对弱筋小麦产量构成因子及产量的影响
Table 4. Effects of waterlogging on grain yield and yield traits of low-gluten wheat
品种
Variety处理
Treatment有效穗
Effective panicle
/(个·株-1)穗粒数
Grain number per
panicle/(粒·穗-1)千粒重
1000-grain
weight/g产量
Yield
/(g·株-1)产量降幅
Yield loss
/%扬麦13 Yangmai 13 N 5.1±0.8a 45.6±1.4a 40.4±0.8a 9.3±0.9a F1 4.7±0.3a 44.7±0.8a 37.7±3.0ab 8.0±0.7ab 14.2 F2 4.8±0.8a 44.9±3.7a 36.1±1.2b 7.8±0.6ab 16.0 F3 4.8±0.3a 41.9±0.4a 35.7±0.6b 7.1±0.3b 23.1 扬麦15 Yangmai 15 N 5.8±0.4a 39.8±2.0a 45.3±2.8a 10.5±0.4a F1 5.2±0.4a 40.0±2.7a 44.7±2.2a 9.2±0.5ab 12.1 F2 5.6±1.1a 33.6±2.5b 43.7±5.4ab 8.0±0.2b 23.6 F3 5.3±0.6a 34.3±2.0b 40.8±1.5b 7.5±1.0b 28.6 扬麦22 Yangmai 22 N 5.7±0.9a 39.5±4.8a 40.5±0.8ab 9.1±1.9ab F1 5.0±0.5ab 37.5±0.9a 40.6±0.5ab 7.5±0.8bc 17.5 F2 4.7±0.3b 37.8±1.4a 41.6±3.3a 7.3±0.3cd 20.0 F3 4.7±0.2b 31.6±4.1b 37.7±2.6b 5.5±0.6d 39.4 糯小麦 Waxy wheat N 5.3±0.3a 35.2±2.9a 43.4±1.1a 8.1±0.7a F1 5.6±0.4a 34.5±3.4a 41.5±2.1a 8.0±1.3a 0.5 F2 6.0±0.1a 29.4±2.8b 41.0±4.0a 7.2±1.2ab 10.2 F3 5.2±0.9a 28.7±1.1b 41.1±1.0a 6.1±0.9b 24.5 注:同一品种、同一指标后无相同小写字母表示在0.05水平有差异显著性。
Note:Indices with different lowercase letters for a same wheat variety indicate significant difference at 0.05 level. -
[1] 高德荣, 张晓, 张伯桥, 等.长江中下游麦区小麦品质改良设想[J].麦类作物学报, 2013, 33(4):840-844. http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201304038GAO D R, ZHANG X, ZHANG B Q, et al. Concept on wheat quality improvement in middle and lower reaches of Yangtze river valley[J]. Journal of Triticeae Crops, 2013, 33(4):840-844.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/mlzwxb201304038 [2] 吴洪颜, 张佩, 徐敏, 等.长江中下游地区冬小麦春季涝渍害灾损风险时空分布特征[J].长江流域资源与环境, 2018, 27(5):1152-1158. doi: 10.11870/cjlyzyyhj201805022Wu H Y, ZHANG P, XU M, et al. Spatial-temporal variations of the risk of winter wheat loss suffered from spring waterlogging disaster in the middle and lower Yangtze river reaches[J]. Resources and Environment in the Yangtze Basin, 2018, 27(5):1152-1158.(in Chinese) doi: 10.11870/cjlyzyyhj201805022 [3] 王传光, 田咏梅, 周浩亮, 等.灌浆期淹水时间对冬小麦旗叶光合特性的影响[J].河北农业科学, 2012, 16(7):11-14. doi: 10.3969/j.issn.1088-1631.2012.07.003WANG C G, TIAN Y M, ZHOU H L, et al. Effects of waterlogging time in filling stage on photo synthetics characteristics of winter wheat flag leaves[J].Journal of Hebei Agriculture Sciences, 2012, 16(7):11-14.(in Chinese) doi: 10.3969/j.issn.1088-1631.2012.07.003 [4] ZIAEI A N, SEPASKHAH A R. Model for simulation of winter wheat yield under dryland and irrigated conditions[J]. Agricultural Water Management, 2003, 58(1):1-17. doi: 10.1016-S0378-3774(02)00080-X/ [5] 朱旭彤, 胡业正, 马平福, 等.小麦抗湿性研究-Ⅰ.小麦湿害的临界期[J].湖北农业科学, 1993(9):3-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001233774ZHU X T, HU Y Z, MA P F, et al. Study on the wet resistance of wheat-Ⅰ. Critical period of wet damage of wheat[J]. Hubei Agriculture Sciences, 1993(9):3-7.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001233774 [6] 艾天成, 李方敏, 周治安, 等.作物叶片叶绿素含量与SPAD值相关性研究[J].湖北农学院学报, 2000(1):6-8. http://d.old.wanfangdata.com.cn/Periodical/hbnxyxb200001002AI T C, LI F M, ZHOU Z A, et al. Relationship between chlorophyll meter readings (SPAD readings) and chlorophyll content of crop leaves[J]. Journal of Hubei Agricultural College, 2000(1):6-8.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hbnxyxb200001002 [7] 李杰, 冯跃华, 牟桂婷, 等.剪叶、粘叶处理对水稻剑叶主脉两侧SPAD值及籽粒产量的影响[J].中国稻米, 2018, 24(6):40-46. doi: 10.3969/j.issn.1006-8082.2018.06.009LI J, FENG Y H, MOU G T, et al. Effects of leaf-cutting and sticking treatments on leaf SPAD value about two sides of main vein of flag leaf and grain yield of rice[J].China Rice, 2018, 24(6):40-46.(in Chinese) doi: 10.3969/j.issn.1006-8082.2018.06.009 [8] 姬静华, 霍治国, 唐力生, 等.早稻灌浆期淹水对剑叶理化特性及产量和品质的影响[J].中国水稻科学, 2016, 30(2):181-192. http://d.old.wanfangdata.com.cn/Periodical/zgsdkx201602009JI J H, HUO Z G, TANG L S, et al. Grain yield and quality and physiological and biochemical characteristics of flag leaf in early rice as affected by submergence at filling stage[J]. Chinese Journal of Rice science, 2016, 30(2):181-192.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgsdkx201602009 [9] 黄钦友, 田文涛, 王晓玲.渍害下小麦相对叶绿素含量的降低效应及其与产量的相关性[J].长江大学学报(自然科学版), 2017, 14(14):1-5. doi: 10.3969/j.issn.1673-1409.2017.14.002HUANG Q Y, TIAN W T, WANG X L. Reduction effects on SPAD values of wheat leaves and its correlation with yield under waterlogging stress[J]. Journal of Yangtze University (Natural Science Edition), 2017, 14(14):1-5.(in Chinese) doi: 10.3969/j.issn.1673-1409.2017.14.002 [10] 肖梦华, 俞双恩, 胡秀君.涝渍胁迫对冬小麦生长因子变化的影响研究[J].灌溉排水学报, 2015, 34(9):33-39. http://d.old.wanfangdata.com.cn/Periodical/ggps201509007XIAO M H, YU S E, HU X J. Effect of waterlogging stress on growth factor change of winter wheat in southern area[J]. Journal of Irrigation and Drainage, 2015, 34(9):33-39.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/ggps201509007 [11] 蒋丽娜, 徐姗, 常江, 等.持续淹水对小麦养分吸收动态和产量的影响[J].中国农学通报, 2012, 28(27):113-117. doi: 10.3969/j.issn.1000-6850.2012.27.023JIANG L N, XU S, CHANG J, et al. The effect of persistent flooding on the kinetic nutrient absorption and output of wheat[J].Chinese Agricultural Science Bulletin, 2012, 28(27):113-117.(in Chinese) doi: 10.3969/j.issn.1000-6850.2012.27.023 [12] 傅前虎, 李金才, 雷鸣.孕穗期根际土壤淹水对小麦氮素代谢和产量的影响[J].安徽农业科学, 2001(5):608-610. doi: 10.3969/j.issn.0517-6611.2001.05.022FU Q H, LI J C, LEI M. Effects of waterlogging stress on nitrogen metabolism and yield in winter wheat at booting stage[J]. Journal of Anhui Agricultural Sciences, 2001(5):608-610.(in Chinese) doi: 10.3969/j.issn.0517-6611.2001.05.022 [13] 曹旸, 蔡士宾, 吴兆苏, 等.小麦孕穗期湿害对不同品种形态生理及产量性状的效应[J].黑龙江农业科学, 1990(4):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001400953CAO Y, CAI S B, WU Z S, et al. Effects of wet damage at booting Stage on morphology, physiology and yield characters of different wheat varieties[J]. Heilongjiang Agricultural Sciences, 1990(4):6-10.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001400953 [14] 毕明, 李福海, 王秀兰, 等.开花后淹水对两个冬小麦品种旗叶光合性能的影响研究[J].气象与环境科学, 2012, 35(1):38-42. doi: 10.3969/j.issn.1673-7148.2012.01.007BI M, LI F H, WANG X L, et al. Effects of post-anthesis waterlogging on flag leaf photosynthetic characteristics in two winter wheat varieties[J]. Meteorological and Environment Sciences, 2012, 35(1):38-42.(in Chinese) doi: 10.3969/j.issn.1673-7148.2012.01.007