Expression of Antioxidant Enzyme Genes in Rice under PEG-simulated Drought-stress
-
摘要:
目的 干旱是影响水稻生产的重要环境因素之一,在干旱条件下水稻植株体内会发生一系列的抗逆反应,其中参与防御反应的关键酶基因表达会发生明显的变化。因此,本研究拟分析干旱胁迫处理后抗氧化酶类基因的表达变化,为进一步研究水稻抗旱机制提供理论参考。 方法 采用质量体积比为0(CK)、18%、20%、22%、24%、26%的聚乙二醇(PEG6000)对三叶一心期的籼稻航2号植株进行干旱胁迫处理,筛选适合处理籼稻航2号的PEG6000质量体积比;进一步采用PEG6000对航2号植株进行干旱胁迫处理,分别于处理0、2、4、8、12、24、48、72 h取样;并用SYBR Green I荧光定量PCR(qRT-PCR)分析PEG6000处理不同时间段后植株中抗氧化酶类基因表达,包括过氧化氢酶(CATA、CATB、CATC)、过氧化物酶(POX5.1、POX1)、超氧化物歧化酶(plastidic Cu/Zn-SOD,cytosolic Cu/Zn-SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)基因的表达变化。 结果 根据表型观察和植株存活率,筛选出籼稻航2号对PEG6000的耐受临界质量体积比为22%;qRT-PCR结果表明PEG6000胁迫处理后9个基因的表达均出现上调,大部分基因表达都呈先上调后下调的趋势,且一般PEG处理4 h之后基因表达出现较明显上调,说明这些基因均不同程度地参与了PEG胁迫反应;其中,过氧化氢酶A基因(CATA)表达变化最显著,处理8 h表达量上调至处理0 h的28倍。 结论 PEG6000胁迫处理后主要的抗氧化酶类基因表达发生了明显的变化。 -
关键词:
- 水稻 /
- 聚乙二醇(PEG6000) /
- 干旱胁迫 /
- 抗氧化酶基因 /
- 表达分析
Abstract:Objective Expression of antioxidant enzyme genes of rice in response to drought-stress was studied. Method Simulated drought conditions using PEG6000 on Indica rice Hang 2 were used for the experimentation. The plants at 3-leaf stage were initially treated with 0% (CK), 18%, 20%, 22%, 24% or 26% PEG6000 to determine the appropriate concentration for the subsequent test. Under the selected PEG6000 treatment level, plant samples were collected at 0, 2, 4, 8, 12, 24, 48 and 72 h for analysis. The expressions of antioxidant enzyme genes (i.e., CATA, CATB and CATC), peroxidase genes (i.e., POX5.1 and POX1), superoxide dismutase genes (i.e., plastidic Cu/Zn-SOD and cytosolic Cu/Zn-SOD), ascorbate peroxidase gene (i.e., APX), and glutathione reductase gene (i.e., GR) of the rice plants were determined by qRT-PCR. Result Based on the phenotype and survival rate of the rice plants in the preliminary test, 22% PEG6000 was chosen for the simulation experiment. The results of qRT-PCR showed that all 9 genes were upregulated initially under the treatment but downregulated afterward. Most of the genes significantly upregulated 4 h after treatment showing a response of the genes to the stress. In particular, CATA exhibited a most significant change at 8 h which was 28 times of that at 0 h. Conclusion The expression of antioxidant enzyme genes significantly reacted to the PEG6000 treatment. -
Key words:
- rice /
- PEG6000 /
- drought stress /
- antioxidant enzymes genes /
- expression analysis
-
图 1 不同浓度PEG6000处理航2号植株情况
注:每幅图从左到右营养液中PEG6000的质量体积比分别为0%(CK)、18%、20%、22%、24%、26%;处理时间A: 0 h,B: 3 h,C: 24 h,D: 48 h,E: 72 h,F: 96 h,G: 7 d,H:恢复生长8 d。
Figure 1. Hang 2 plants treated by varying concentrations of PEG6000
Note: PEG600 concentrations in photos from left to right are 0% (CK), 18%, 20%, 22%, 24% and 26%; treatment time A=0 h, B=3 h, C=24 h, D=48 h, E=72 h, F=96 h, G=7 d, H=recovery after 8 d.
图 5 qRT-PCR分析抗氧化酶基因的表达情况
注:A为过氧化氢酶A基因表达量,B为过氧化氢酶B基因表达量,C为过氧化氢酶C基因表达量,D为过氧化物酶5基因表达量,E为过氧化物酶1基因表达量,F为质体铜/锌超氧化物歧化酶基因表达量,G为细胞质铜/锌超氧化物歧化酶基因表达量,H为抗坏血酸过氧化物酶基因的表达量,I为谷胱甘肽还原酶基因的表达量。
Figure 5. Expression analysis on antioxidant enzyme genes by qRT-PCR
Note:A:The relative expression of CATA, B:The relative expression of CATB, C:The relative expression of CATC, D:The relative expression of POX 5.1, E:The relative expression of POX 1, F:The relative expression of plastidic Cu/Zn-SOD, G:The relative expression of cytosolic Cu/Zn-SOD, H:The relative expression of APX, I:The relative expression of GR.
表 1 抗氧化酶基因引物序列
Table 1. Primers of antioxidant enzyme genes
基因名称
Gene names上游引物F/下游引物R(5′-3′)
Upstream primer F/Downstream primer R产物大小
Product/bp过氧化氢酶A基因CATA F:GAGGAGGCAGAAGGCGACGATA
R:CCCCCAACGACTCATCACACTG194 过氧化氢酶B基因CATB F:GACGGATGGTCCTGAACAAAAACA
R:CAAGACGGTGCCTTTGGGTATCA159 过氧化氢酶C基因CATC F:CTTCCCCGTCTTCTTCATCCGC
R:TCGTCGAAGAGGAAGGTGAACAT159 过氧化物酶5基因POX5.1 F:ACTTGGTTGCTCTCTCAGGTGCG
R:GGTGGGCGTCGTCGTGTC182 过氧化物酶1基因POX1 F:ACTCGTGCCCCAAGGCGAAGGA
R:GCTGTTGTCCAGGAGCACAGACG149 质体铜/锌超氧化物歧化酶基因plastidic Cu/Zn-SOD F:CCACCTCCACGAGTTTGGCGAT
R:CTCAGCTACACCTTCAGCATTGGC154 细胞质铜/锌超氧化物歧化酶基因cytosolic Cu/Zn-SOD F:GGAAATGTCACCGCTGGAGAAG
R:AACGACGGCTCTGCCAATGATT102 抗坏血酸过氧化物酶基因APX F:CTGCCGTCCCCTTCCACCCA
R:CCGCCAGAGAGGGCAACAAT154 谷胱甘肽还原酶基因GR F:TTCCTCCAAAGCCTGCTGTTCACT
R:GCCAGCCAACTAAACCTGATTACA101 内参基因,真核起始因子eIf4a F:TTGTGCTGGATGAAGCTGATG
R:GGAAGGAGCTGGAAGATATCATAGA76 内参基因,肌动蛋白基因Actin150 F:AGTGTCTGGATTGGAGGAT
R:TCTTGGCTTAGCATTCTTG150 表 2 不同质量体积比的PEG6000处理后植株存活率
Table 2. Plant survival rates after PEG6000 treatments in different mass and volume ratios
PEG质量体积比
Mass and volume
ratio of PEG/%植株数量
Plant
number存活的
植株数量
Survival plant存活率
Survival
rate/%0 25 25 100 18 25 25 100 20 25 25 100 22 25 3 12 24 25 0 0 26 25 0 0 -
[1] 匡勇, 夏石头.干旱对水稻生长发育的影响及提高水稻抗旱性的途径[J].北京农业, 2007(36):8-14. doi: 10.3969/j.issn.1000-6966.2007.36.003KUANG Y, XIA S T. Effects of drought on growth and development and approachs to promoting droughtresistance of rice[J].Beijing Agriculture, 2007(36):8-14.(in Chinese) doi: 10.3969/j.issn.1000-6966.2007.36.003 [2] SALEHI S P, IZADPANAH M, FALAH H L, et al.Comparison of the effects of drought stress on pigments, peroxidase, osmotic adjustment and antioxidant enzymes in different accessions of anthemistinctoria and tripleurospermum servanes of natural resources gene bank of iran[J].En Journals, 2015:126-139. [3] 蒋明义, 郭绍川.水分亏缺诱导的氧化胁迫和植物的抗氧化作用[J].植物生理学通讯, 1996, 32(2):144-150. http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201808024JIANG M Y, GUO S C. Oxidative stress and antioxidation induced by water deficiency in plants[J].Plant Physiology Communications, 1996, 32(2):144-150.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/wjsjxx201808024 [4] BOWLER C, MONTAGU M V, INZE D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1992, 43(1):83-116. doi: 10.1146/annurev.pp.43.060192.000503 [5] APEL K, HIRT H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55(1):373-399. doi: 10.1146/annurev.arplant.55.031903.141701 [6] NOCTOR G, FOYER C H. Ascorbate and glutathione:keeping active oxygen under control[J].Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49(1):249-279. doi: 10.1146/annurev.arplant.49.1.249 [7] AMUDHA J, BALASUBRAMANI G. Recent molecular advances to combat abiotic stresstolerance in crop plants[J]. Biotechnol Mol Biol Rev, 2011(6):31-58. [8] MORITA S, TASAKA M, FUJISAWA H, et al. A cDNA clone encoding a rice catalase isozyme[J]. Plant Physiol, 1994, 105(3):1015-1016. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_160753 [9] HIGO K, HIGO H. Cloning and characterization of the rice CatA catalase gene, a homologue of the maize Cat3 gene[J]. Plant Molecular Biology, 1996, 30(3):505-521. doi: 10.1007/BF00049328 [10] AGRAWAL G K, RAKWAL R, JWA N S. Stress signaling molecules involved in defense and protein phosphatase 2A inhibitorsmodulate OsCATC expression in rice (Oryza sativa) seedlings[J].Journal of Plant Physiology, 2001, 158(10):1349-1355. doi: 10.1078/0176-1617-00607 [11] KIM S H, CHOI H S, CHO Y C, et al. Cold-Responsive Regulation of a Flower-Preferential Class Ⅲ Peroxidase Gene, OsPOX1, in Rice (Oryzasativa L.)[J]. Journal of Plant Biology, 2012, 55(2):123-131. doi: 10.1007/s12374-011-9194-3 [12] SASAKI K, IWAI T, HIRAGA S, et al. Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus[J]. Plant & Cell Physiology, 2004, 45(10):1442-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002825548 [13] ALSCHER R G, ERTURK N, HEATH L S. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 2002, 53(372):1331-1341. doi: 10.1093/jexbot/53.372.1331 [14] PRAKASH S R, SAMANT A, PRASHAR V, et al.Biochemical and functional characterization of OsCSD3, a novel CuZn superoxidedismutase from rice[J].Biochemical Journal, 2018, 475(19):3105-3121. doi: 10.1042/BCJ20180516 [15] TEIXEIRA F K, MENEZES-BENAVENTE L, GALVÃO V C, et al.Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments[J].Planta, 2006, 224(2):300-314. doi: 10.1007/s00425-005-0214-8 [16] NOCTOR G, FOYER C H. Ascorbate and glutathione:keepingactive oxygen under control[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 1998, 49(1):249-279. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210504163/ [17] BASHIR K, NAGASAKA S, ITAI R N, et al. Expression and enzyme activity of glutathione reductase is upregulated by Fe-deficiency in graminaceous plants[J]. Plant Molecular Biology, 2007, 65(3):277-284. doi: 10.1007/s11103-007-9216-1 [18] ROUHIER N I, COUTURIER J, JACQUOT J P. Genome-wide analysis of plant glutaredoxin systems[J]. Journal of Experimental Botany, 2006, 57(8):1685-1696. doi: 10.1093/jxb/erl001 [19] 杨春杰, 张学昆, 邹崇顺, 等.PEG-6000模拟干旱胁迫对不同甘蓝型油菜品种萌发和幼苗生长的影响[J].中国油料作物学报, 2007, 29(4):425-430. doi: 10.3321/j.issn:1007-9084.2007.04.013YANG C J, ZHANG X K, ZOU C S, et al. Effects of drought simulated by PEG-6000 on germination and seedling growth of rapeseed(Brassica napus L.)[J].Chinese Journal of Oil Crop Sciences, 2007, 29(4):425-430.(in Chinese) doi: 10.3321/j.issn:1007-9084.2007.04.013 [20] 李雪妹, 刘畅, 刘倩雯, 等.PEG预处理对水分胁迫下水稻叶片抗氧化酶同工酶及其表达的影响[J].作物杂志, 2016(6):107-111. http://d.old.wanfangdata.com.cn/Periodical/zwzz201606018LI X M, LIU C, LIU Q W, et al. The effect of PEG pretreatment on expression of antioxidant isozymes of rice leaves under water stress[J]. Crops, 2016(6):107-111.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwzz201606018 [21] 陈美静, 刘倚雯, 张宝龙, 等.不同预处理对P EG胁迫下水稻幼苗抗氧化系统的影响[J], 江苏农业科学, 2015, 43(8):76-78. http://d.wanfangdata.com.cn/Periodical/jsnykx201508025CHEN M J, LIU Y W, ZHANG B L, et al. The effect of different pretreatment on rice antioxidant system under PEG stress[J]. Jiangsu Agricultural Sciences, 2015, 43(8):76-78.(in Chinese) http://d.wanfangdata.com.cn/Periodical/jsnykx201508025 [22] 戴高兴, 彭克勤, 萧浪涛, 等.聚乙二醇模拟干旱对耐低钾水稻幼苗丙二醛、脯氨酸含量和超氧化物歧化酶活性的影响[J].中国水稻科学, 2006, 20(5):557-559. doi: 10.3321/j.issn:1001-7216.2006.05.018DAI G X, PENG K Q, XIAO L T, et al. Effect of drought stress simulated by peg on m alonaldehyde, proline contents andsuperoxide dismutase activity in low potassium tolerant rice seedlings[J]. Chinese J Rice Sci, 2006, 20(5):557-559.(in Chinese) doi: 10.3321/j.issn:1001-7216.2006.05.018 [23] 张小娟, 宋涛, 甄晓辉, 等.模拟干旱胁迫对转C4双基因水稻幼苗光合功能及部分抗氧化酶活性的影响[J].江苏农业学报, 2014, 30(4):709-715. http://d.old.wanfangdata.com.cn/Periodical/jsnyxb201404003ZHANG X J, SONG T, ZHEN X H, et al. Impact of simulated drought stress on photosynthesis and activities of someantioxidant enzymes of transgenic rice seedlings harboring maize PEPCand PPDK genes[J]. Jiangsu Journal of Agricultural Sciences, 2014, 30(40):709-715.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/jsnyxb201404003