Environmental Effects on Growth and Ecological Stoichiometry of Azolla
-
摘要:
目的 研究不同生长环境对红萍生长和生态化学计量特征的影响,可为水生生态系统的生态化学计量学研究提供科学依据,并达到更好地保存红萍种质资源的目的。 方法 设置网室土壤水培养和温室营养液培养2种处理,分析比较两种培养方式条件下,蕨状满江红、墨西哥满江红、卡州满江红、小叶满江红、覆瓦状满江红、羽叶满江红、回交萍、杂交萍等8个红萍品种的生物量,及其C、N、P生态化学计量特征。 结果 8个红萍品种的生物量、C含量与N含量网室土壤水培养处理均高于温室营养液培养处理,P含量则是网室土壤水培养处理低于温室营养液培养处理;红萍的C:P值与N:P值网室土壤水培养处理均高于温室营养液培养处理,而C:N值二者差异较小;由于参试红萍品种的N:P均较低(仅为1.78~8.08),说明红萍生长主要受N元素的限制。 结论 网室土壤水培养比温室营养液培养更加适合红萍的生长,N元素对红萍的生长和培养至关重要,网室土壤水培养的应该增施氮肥,而温室营养液培养的应该保证营养液中N元素充足。 Abstract:Objective To provide the fundamental scientific information on Azolla for preservation and study the effects of environmental conditions on the growth and ecological stoichiometry of the aquatic plants in the ecosystem. Method Using a soil water culture under a net cover (SWN) or a nutrient water culture in a greenhouse (NWG), the biomasses and ecological stoichiometric characteristics on C, N and P of 8 varieties of Azolla, including A. filiculoides lamarck, A. Mexicana Schlecht et cham, A. caroliniana Willd, A. microphylla Kaulf, A. imbricate (Roxb.) Nakais, A. pinnata R. Brown, A. microphylla Kaulf and A. microphylla Minyu No.1, were compared. Result In SWN, the biomasses and contents of C and N of all 8 varieties were higher than those in NWG, but the P contents were lower. The C:P and N:P ratios of the plants in SWN were higher than those in NWG, whereas, the C:N ratios were similar. Since the N:P ratios of all plants grown in either SWN or NMG were below 14, N was presumably the primary factor affecting the plant growth. Conclusion Cultivation in SWN appeared to be more conducive than NWG to the growth of Azolla plants. In addition, N seemed to be a crucial nutrient, more so than C or P, for the growth of Azolla. -
Key words:
- growth environment /
- Azolla /
- C /
- N /
- P /
- ecological stoichiometry
-
表 1 试验材料
Table 1. Test Materials
种名
Species学名
Scientific name品系
Lines资源类型
Resource tipe来源
Source蕨状满江红 A. filiculoides lamarck 1007 野生资源 国家红萍种质圃(福州) 墨西哥满江红 A. Mexicana Schlecht et cham 2007 野生资源 国家红萍种质圃(福州) 卡州满江红 A. caroliniana Willd 3006 野生资源 国家红萍种质圃(福州) 小叶满江红 A. microphylla Kaulf. 4021 野生资源 国家红萍种质圃(福州) 覆瓦状满江红 A. imbricate(Roxb.) Nakais 542 野生资源 国家红萍种质圃(福州) 羽叶满江红 A. pinnata R.Brown 7016 野生资源 国家红萍种质圃(福州) 回交萍 A. microphylla Kaulf. MH4 育成品种 国家红萍种质圃(福州) 杂交萍 A. microphylla ‘Minyu No.1’ 4087 育成品种 国家红萍种质圃(福州) 表 2 温室营养液配方
Table 2. Formulas of culture solutions
序号
Serial number药品
Reagent浓度
Concentration/(g·L-1)1 CaSO4·2H2O 0.17 2 MgSO4·7H2O 0.41 3 KH2PO4 0.04 4 KCl 0.02 5 EDTA-Na2 0.004 6 FeSO4·7H2O 0.003 7 H3BO3 0.0015 8 Na2MoO4·2H2O 0.0019 9 NaNO3 0.06 表 3 不同生长环境下各品种红萍的生物量
Table 3. Biomass of Azolla varieties under different culture settings
(单位/g) 品种
Species网室土壤水培养
Net soil water culture温室营养液培养
Greenhouse nutrient culture蕨状满江红 A. filiculoides lamarck 369.86±30.08 Aa(Aa) 103.32±4.19 Aa(Bb) 墨西哥满江红 A. Mexicana Schlecht et cham 330.97±37.80 ABab(Aa) 107.66±5.42 Aa(Bb) 卡州满江红 A. caroliniana Willd 345.54±43.09 ABa(Aa) 108.45±2.66 Aa(Ab) 小叶满江红 A. microphylla Kaulf. 264.84±74.53 BCbc(Aa) 88.39±1.40 BCb(Ab) 覆瓦状满江红 A. imbricate(Roxb.) Nakais 339.16±29.03 ABa(Aa) 47.21±4.04 Dc(Bb) 羽叶满江红 A. pinnata R.Brown 207.35±17.46 Cc(Aa) 98.74±8.92 ABa(Bb) 回交萍 A. microphylla Kaulf. 372.55±27.97 Aa(Aa) 87.44±5.98 BCb(Bb) 杂交萍A. microphylla ‘Minyu No.1’ 389.35±12.66 Aa(Aa) 80.47±7.63 Cb(Bb) 注:(1)表中数据为1瓷盆(放萍量20 g)的生物量;(2)表中数据均为平均值±标准差,数据后括号外无相同大、小写字母者分别表示同一处理下不同品种间差异达极显著水平(P<0.01)和显著水平(P<0.05);(3)数据后括号内无相同大、小写字母者分别表示同一品种不同处理间差异达极显著水平(P<0.01)和显著水平(P<0.05)。表 4、5同。
Note: The data in the table are mean±standard deviation. The upper and lower case letters outside the parenthesis are not the same, indicating that the difference between different varieties under the same treatment is extremely significant (P < 0.01) and significant level (P < 0.05); the upper and lower case letters in the brackets after the data are not the same, indicating that the difference between the different treatments of the same variety is extremely significant (P < 0.01) and significant (P < 0.05).The same as table 4, 5.表 4 不同生长环境下红萍的C、N、P含量特征
Table 4. C, N and P contents of Azolla plants under different culture settings
[单位/(mg·g-1)] 品种
Species网室土壤水培养 Net soil water culture 温室营养液培养 Greenhouse nutrient culture C N P C N P 蕨状满江红 A. filiculoides lamarck 376.0±4.4 Bb(Aa) 44.1±1.0 Aa(Aa) 6.6±1.5 Aabc(Aa) 330.3±6.0 ABa(Ba) 34.2±0.4 ABab(Bb) 6.5±1.2 Gg(Aa) 墨西哥满江红 A. Mexicana Schlecht et cham 471.0±45.2 Aa(Aa) 38.7±4.7 Aab(Aa) 5.1±0.2 Abc(Bb) 255.7±60.1 Bb(Bb) 33.1±3.8 ABb(Ab) 10.1±1.7 EFef(Aa) 卡州满江红 A. caroliniana Willd 401.0±14.8 Bb(Aa) 40.7±1.9 Aab(Aa) 7.6±2.4 Aab(Bb) 262.7±13.3 ABb(Ab) 35.9±0.2 Aa(Ab) 13.6±0.7 CDd(Aa) 小叶满江红 A. microphylla Kaulf. 410.0±11.3 Bb(Aa) 39.3±6.5 Aab(Aa) 7.4±1.2 Aab(Bb) 286.3±47.6 ABab(Ab) 32.8±1.5 ABb(Ab) 9.0±0.7 FGf(Aa) 覆瓦状满江红 A. imbricate(Roxb.) Nakais 404.7±7.0 Bb(Aa) 39.1±3.4 Aab(Aa) 5.6±0.6 Aabc(Bb) 337.7±22.8 Aa(Bb) 26.0±0.4 Cc(Ab) 14.6±0.3 BCc(Aa) 羽叶满江红 A. pinnata R.Brown 407.7±6.5 Bb(Aa) 36.0±0.5 Ab(Aa) 4.5±0.6 Ac(Bb) 321.7±3.8 ABa(Bb) 33.8±0.2 ABab(Bb) 11.8±0.6 DEe(Aa) 回交萍 A. microphylla Kaulf. 405.0±10.4 Bb(Aa) 40.5±1.2 Aab(Aa) 5.9±1.2 Aabc(Bb) 293.7±9.1 ABab(Bb) 36.1±0.7 Aa(Bb) 19.5±0.7 Aa(Aa) 杂交萍 A. microphylla ‘Minyu No.1’ 316.0±8.7 Cc(Aa) 40.0±2.8 Aab(Aa) 7.8±1.2 Aa(Bb) 309.7±7.4 ABab(Aa) 31.7±0.5 ABb(Bb) 16.7±1.4 Bb(Aa) 表 5 不同生长环境下红萍的生态化学计量特征
Table 5. Ecological stoichiometry of Azolla plants under different culture settings
[单位/(mg·g-1)] 品种
Species网室土壤水培养 Net soil water culture 温室营养液培养 Greenhouse nutrient culture C:N C:P N:P C:N C:P N:P 蕨状满江红 A. filiculoides lamarck 8.53±0.08 Bbc(Bb) 59.12±14.41 Bbc(Aa) 6.93±1.64 Aabc(Aa) 9.66±0.17 Bb(Aa) 51.50±8.62 Aa(Aa) 5.33±0.91 Aa(Aa) 墨西哥满江红 A. Mexicana Schlecht et cham 12.38±2.68 Aa(Aa) 91.72±10.52 Aa(Aa) 7.53±0.94 Aab(Aa) 7.90±2.56 Bbc(Aa) 26.29±9.27 BCbc(Bb) 3.36±0.83 Bbc(Bb) 卡州满江红 A. caroliniana Willd 9.87±0.75 ABabc(Aa) 56.43±17.08 Bbc(Aa) 5.65±1.35 Abc(Aa) 7.32±0.41 Bc(Bb) 19.34±1.15 Ccd(Aa) 2.64±0.14 BCcd(Aa) 小叶满江红 A. microphylla Kaulf. 10.67±2.14 ABab(Aa) 56.87±10.90 Bbc(Aa) 5.34±0.16 Abc(Aa) 8.79±1.85 Bbc(Aa) 31.83±2.90 Bb(Ab) 3.68±0.47 Bb(Bb) 覆瓦状满江红 A. imbricate(Roxb.) Nakais 10.41±0.98 ABabc(Ab) 73.34±8.52 ABab(Aa) 7.07±0.89 Aabc(Aa) 13.00±1.02 Aa(Aa) 23.08±1.52 BCbcd(Bb) 1.78±0.03 Cd(Bb) 羽叶满江红 A. pinnata R.Brown 11.32±0.18 ABa(Aa) 91.56±11.97 Aa(Aa) 8.08±0.96 Aa(Aa) 9.52±0.12 Bbc(Bb) 27.22±1.13 BCbc(Ab) 2.86±0.14 BCbc(Bb) 回交萍 A. microphylla Kaulf. 10.00±0.25 ABabc(Aa) 70.49±16.41 ABab(Aa) 7.07±1.77 Aabc(Aa) 8.13±0.11 Bbc(Bb) 15.08±1.01 Cd(Ab) 1.86±0.10 Cd(Ab) 杂交萍 A. microphylla ‘Minyu No.1’ 7.93±0.64 Bc(Ab) 41.05±6.21 Bc(Aa) 5.16±0.46 Ac(Aa) 9.76±0.87 Bb(Aa) 18.61±1.21 Ccd(Bb) 1.91±0.14 Cd(Bb) -
[1] STERNER R W. Elemental Stoichiometry of Species in Ecosystems[M]//Linking Species & Ecosystems. Springer US, 1995: 240-252. [2] ELSER J J, STERNER R W, GOROKHOVA E, et al.Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6):540-550. doi: 10.1046/j.1461-0248.2000.00185.x [3] ZHANG L, BAI Y, HAN X. Application of N:P stoichiometry to ecology studies[J]. Acta Botanica Sinica, 2003, 45(9):1009-1018. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ023586192 [4] RAUBENHEIMER D. Nutrition, ecology and nutritional ecology:toward an integrated framework[J]. Functional Ecology, 2010, 23(1):4-16. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ025054921/ [5] ELSER J J, ANDERSEN T, BARON J S, et al. Shifts in Lake N:P Stoichiometry and Nutrient Limitation Driven by Atmospheric Nitrogen Deposition[J]. Science, 2009, 326(5954):835-837. doi: 10.1126/science.1176199 [6] 黄毅斌.红萍在稻萍鱼体系中的部分作用研究[J].福建农业科技, 1991(4):8-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000433242HUANG Y B. Partial role of Azolla in the rice-azolla-fish system[J]. Fujian Agricultural Science and Technology, 1991(4):8-10.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000433242 [7] 黄毅斌, 翁伯奇, 唐建阳, 等.稻-萍-鱼体系对稻田土壤环境的影响[J].中国生态农业学报, 2001, 9(1):74-76. http://d.old.wanfangdata.com.cn/Periodical/stnyyj200101028HUANG Y B, WENG B Q, TANG J Y, et al. Effect of rice-azolla-fish system on soil environment of rice field[J]. Chinese Journal of Eco-Agriculture, 2001, 9(1):74-76.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stnyyj200101028 [8] YU H, FAN J, LI Y. Foliar carbon, nitrogen, and phosphorus stoichiometry in a grassland ecosystem along the Chinese Grassland Transect[J]. Acta Ecologica Sinica, 2017, 37(3):133-139. doi: 10.1016/j.chnaes.2017.06.005 [9] WATANABE I, ESPINAS C R, BERGA N S, et al. Utilization of Azolla anabaena complex as a nitrogen fertilizer for rice[J]. Farming Systems, 1977. [10] REICH P B, TJOELKER M G, MACHADO J L, et al. Universal scaling of respiratory metabolism, size and nitrogen in plants[J]. Nature, 2006, 439(7075):457-461. doi: 10.1038/nature04282 [11] 张仲胜, 吕宪国, 薛振山, 等.中国湿地土壤碳氮磷生态化学计量学特征研究[J].土壤学报, 2016, 53(5):1160-1169. http://d.old.wanfangdata.com.cn/Periodical/trxb201605008ZHANG Z S, LV X G, XU Z S, et al.Study on ecological chemometrics characteristics of carbon, nitrogen and phosphorus in wetland soils of China[J]. Journal of Soil Science, 2016, 53(5):1160-1169.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/trxb201605008 [12] 范颖.菲律宾蛤仔养殖在浅海碳循环中的作用——以胶州湾为例[D].青岛: 中国海洋大学, 2015. http://d.wanfangdata.com.cn/Thesis/Y2900290FAN Y. The role of Philippine clam farming in the shallow sea carbon cycle: a case study of Jiaozhou Bay[D].Qingdao: Ocean University of China, 2015.(in Chinese) http://d.wanfangdata.com.cn/Thesis/Y2900290 [13] ROSSWALL T. The Internal Nitrogen Cycle between Microorganisms, Vegetation and Soil[J]. Ecological Bulletins, 1976(22):157-167. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/027046760102100207 [14] DOWNING J A, MCCAULEY E. The nitrogen:phosphorus relationship in lakes[J]. Limnology & Oceanography, 1992, 37(5):936-945. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2199826 [15] REICH P B, OLEKSYN J.Global patterns of plant leaf N and P in relation to temperature and latitude[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101:11001-11006. doi: 10.1073/pnas.0403588101 [16] HAN W, FANG J, GUO D, et al. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J]. New Phytologist, 2005, 168(2):377-385. doi: 10.1111/j.1469-8137.2005.01530.x [17] 胡伟芳, 章文龙, 张林海, 等.中国主要湿地植被氮和磷生态化学计量学特征[J].植物生态学报, 2014, 38(10):1041-1052. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410002HU W F, ZHANG W L, ZHANG L H, et al. Ecological and stoichiometric characteristics of nitrogen and phosphorus in main wetland vegetations in China[J]. Chinese Journal of Plant Ecology, 2014, 38(10):1041-1052.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwstxb201410002 [18] 任书杰, 于贵瑞, 陶波, 等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究[J].环境科学, 2007, 28(12):2665-2673. doi: 10.3321/j.issn:0250-3301.2007.12.001REN S J, YU G R, TAO B, et al. Studies on the chemometric characteristics of nitrogen and phosphorus in leaves of 654 plants in the north-south transect of eastern China[J].Environmental Science, 2007, 28(12):2665-2673.(in Chinese) doi: 10.3321/j.issn:0250-3301.2007.12.001 [19] KOERSELMAN W. The Vegetation N:P Ratio:a New Tool to Detect the Nature of Nutrient Limitation[J]. Journal of Applied Ecology, 1996, 33(6):1441-1450. doi: 10.2307/2404783