Changes on Composition of Volatile Organic Compounds in Mango Leaves Induced by Procontarinai robusta Infestation
-
摘要:
目的 探讨芒果壮铗普瘿蚊为害对芒果叶片挥发物的影响,为瘿蚊防治提供参考依据。 方法 采用顶空固相微萃取(SPME)及气质联用仪(GC-MS)技术分析芒果壮铗普瘿蚊为害后芒果叶片挥发性物质和相对含量的变化。 结果 健康叶片和虫伤叶分别含有65种和66种挥发物成分,其中45个组分相同,主要包括石竹烯、α-荜澄茄烯、十八碳烯、蒈烯、水芹烯、β-月桂烯、蒎烯等。瘿蚊为害后挥发物主要为萜烯类31种和芳香族化合物13种,相对含量分别高达51.41%和41.10%,酯类物质相对含量明显高于健康叶片,成分也发生改变。虫伤叶挥发物除了萘和薁之外,主要物质包括甲基-4-(1-甲基亚乙基)-环己烯(24.32%)、α-荜澄茄烯(8.92)、3-蒈烯(2.23%)、乙酸酯3-己烯-1-醇(2.23%)、4-蒈烯(1.06%)、柠檬烯(1.04%)、a-石竹烯(1.46%)。极微量物质包括辛醇、兰桉醇、斯巴醇、表蓝桉醇、长香茅醇,香豆素类化合物只在健康叶片中检测到,马兜铃烯、法呢烯和一些特殊萘和薁芳香族化合物只在虫伤叶中检测到。 结论 芒果叶片的主要挥发性物质为芳香族类和萜烯类化合物,瘿蚊为害后导致挥发物质和含量发生明显改变。 Abstract:Objective To identify the variations on volatile organic compounds (VOCs) in mango leaves due to infestation by Procontarinai robusta for future study to mitigate or control the disease caused by the midge. Method The VOCs in healthy leaves from a mango tree were compared with those in the midge-infested leaves by using headspace solid-phase microextraction (SPME) combined with gas chromatography mass spectrometry (GC–MS). Result The healthy leaves were found to contain 65 VOCs, while the diseased ones 66 VOCs. Between them, 45 were identical which included caryophyllene, α-cyanene, octadecene, decene, hydrocelene, β-Myrcene, and terpenes. In the diseased leaves, 31 terpenes contributed 51.41%, while 13 aromatic compounds made up 41.10%, of the total. Besides naphthalene and azulene compounds, methyl-4-(1-methylethylidene)-cyclohexene comprised 24.32%, α-cubebene 8.92%, 3-carene 2.23%, acetate 3-hexen-1-ol 2.23%, 4-carene 1.06%, limonene 1.04%, and α-caryophyllene 1.46%. The content of esters was much higher in the midge-infested leaves than that of the healthy counterparts, and the composition also differed from each other. Minute amounts of substances, such as octanol, lanthanol, spartanol, epichlorohydrin, long citronellol and coumarins, were detected in the healthy leaves but not in the infested samples. Whereas, aristoloene, farnesene and some special naphthalene and azulene aromatic compounds were found only in the midge-infested leaves. Conclusion The VOCs in mango leaves mainly consist of aromatic components and terpenes, the composition and content of which were obviously changed after Procontarinairobusta damage. -
Key words:
- Procontarinai robusta /
- HS-SPME /
- GC-MS /
- volatile organic compounds /
- midge-infested mango leaves
-
表 1 健康叶片和虫伤叶挥发性化合物数量及其相对含量
Table 1. Number of volatiles and relative contents (%) released from midge-infested mango leaves
序号
Number化合物
Compound健康叶片Healthy leaves 虫伤叶Midge-infested leaves 数目
Number相对含量
Relative content/%数目
Number相对含量
Relative content/%1 芳香族化合物Aromatic compounds 16 29.79 13 41.10 2 萜烯类Tetpenes 27 50.64 31 51.41 3 醇类Alcohols 9 1.05 4 0.96 4 酯类Esters 4 0.07 4 2.30 5 酮类Ketones 1 0.11 1 0.10 6 烃类Hydrocarbons 7 1.89 8 2.78 7 醛类Aldehydes 2 1.10 2 0.78 8 酸类Acids 2 0.25 5 0.80 表 2 芒果叶片挥发性主要物质成分鉴定
Table 2. Major volatiles in mango leaves
序号
Number化合物
Compound相对含量Relative content/% 健康叶片
Healthy leaves虫伤叶
Insect-infested leaves1 α-荜澄茄油烯a-Cubebene 5.03 8.92 2 3-蒈烯3-Carene 3.01 2.23 3 4-蒈烯4-Carene 1.98 1.60 4 柠檬烯D-Limonene 1.10 1.04 5 α-石竹烯α-Caryophyllene 0.89 1.46 6 α-水芹烯α-Phellandrene 0.84 0.37 7 β-水芹烯β-Phellandrene 0.44 0.06 8 月桂烯β-Myrcene 0.85 0.87 9 十八碳烯1, 3, 6-Octatriene, 3, 7-dimethyl-, 0.57 0.62 10 薄荷脑烯1, 3, 8-p-Menthatriene 0.31 0.26 11 α-蒎烯α-Pinene 0.39 0.52 12 β-蒎烯β-Pinene 0.02 0.01 13 β-愈创木烯β-Guaiene 0.54 - 14 马兜铃烯(-)-Aristolene - 2.03 15 法呢烯α-Farnesene - 0.08 16 1-甲基-4-(1-甲基亚乙基)-环己烯,Cyclohexene, 1-methyl-4-(1 - methylethylidene)- 31.60 24.31 17 化合物薁1H-Cycloprop[e]azulene, decahydro-1, 1, 7-trimethyl-4-methylene-,[1aR-(1a.alpha., 4a.alpha., 7.alpha., 7a. beta., 7b.alpha.)]- 14.70 11.40 18 乙酸酯3-己烯-1-醇,3-Hexen-1-ol, acetate, 0.61 2.23 19 化合物萘Naphthalene, 1, 2, 3, 5, 6, 8a-hexahydro-4, 7-dimethyl-1-(1-methylethyl)-, (1S-cis)- 3.42 4.91 20 化合物萘Naphthalene, decahydro-4a-methyl-1-methylene-7-(1-methylethenyl)-, [4aR-(4a.alpha., 7.alpha., 8a.beta.)]- 6.46 5.56 21 1H-Cycloprop[e]azulene, 1a, 2, 3, 4, 4a, 5, 6, 7b-octahydro-1, 1, 4, 7-tetramethyl-, [1aR-(1a.alpha., 4.alpha., 4a.beta., 7b.alpha.)]- 10.95 11.59 22 喇叭茶醇Ledol 0.05 0.04 23 牛儿烯,双环吉马烯Bicyclogermacrene 0.23 0.31 24 1-甲基-4-苯(1-甲基乙烯基)Benzene, 1-methyl-4-(1-methylethenyl)- 1.48 1.98 25 β-律草烯β-Humulene - 0.07 26 2-戊烯-1-醇,2-Penten-1-ol, (Z)- - 0.02 27 1-乙烯基-1-甲基-2, 4-双(1-甲基乙烯基)-环己烷,[1s-(1.α,2.β,4.β.)]Cyclohexane, 1-ethenyl-1-methyl-2, 4-bis(1-methylethenyl)-, [1S-(1.alpha., 2.beta., 4.beta.)]- - 2.16 28 甲基水杨酸Methyl salicylate - 0.40 29 α-Panasinsen 0.63 0.51 30 硫氰酸二酯Thiocyanic acid carbazol-3, 6-diyl ester 0.02 - 注:表中“-”表示该成分未被检测到。
Note:“-” indicates non-detection. -
[1] 李军, 卜文俊, 张清源.危害芒果叶片的瘿蚊科-中国新纪录和物种[J].动物分类学报, 2006, 28(1):148-151. doi: 10.3969/j.issn.1000-0739.2006.01.024LI J, PU W J, ZHANG Q Y. A new species of gall midge (Diptera, Cecidomyiidae) attacking mango leaves from China[J]. Acta Zootaxonomica Sinica, 2006, 28(1):148-151.(in Chinese) doi: 10.3969/j.issn.1000-0739.2006.01.024 [2] NENTWIG W. Handbook of Alien Species in Europe. In chapter 11, list of species alien in Europe and to Europe[M]. Dordrecht: Springer Dordrecht, 2009: 247. [3] 陈永森, 黄国弟, 李日旺, 等.入侵有害生物壮铗普瘿蚊在我国的风险分析[J].南方农业学报, 2017, 48(3): 454-458. http://d.old.wanfangdata.com.cn/Periodical/gxnykx201703012CHEN Y S, HUANG G D, LI R W, et al. Risk analysis of Procontarinia robusta Li, Bu and Zhang in China: An invasive pest[J]. Journal of Southern Agriculture, 2017, 48(3): 454-458.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxnykx201703012 [4] CAI H J, Kolesik P, Wang HY, et al. Description of the immature stages and gall morpholgy, and molecular characterisation of Procontarinia robusta, a gall midge (Diptera: Cecidomyiidae) damaging leaves of mango Mangifera indica L. (Anarcadiaceae) in southern Asia[J]. Australian Journal of Entomology, 2013, 52: 206-211. doi: 10.1111/aen.2013.52.issue-3 [5] 王伟新, 王宏毅.芒果壮铗普瘿蚊生物学特性初报[J].福建农业学报, 2005, 20(2):74-76. doi: 10.3969/j.issn.1008-0384.2005.02.003WANG W X, WANG H Y. A preliminary report on biological characters of Procontarinia robusta in mango[J]. Fujian Journal of Agricultral Science, 2005, 20(2):74-76.(in Chinese) doi: 10.3969/j.issn.1008-0384.2005.02.003 [6] DEMORAES C M, LEWIS W J, PAR P W. Herbivore-infested plants selectively attract parasitoids[J]. Nature, 1998, 393(6685): 570-573. doi: 10.1038/31219 [7] 杜家纬.植物-昆虫间的化学通讯及其行为控制[J].植物生理学报, 2005, 27(3):193-200. http://d.old.wanfangdata.com.cn/Periodical/zwslxb200103001DU J W. Plant-insect Chemical Communication and Its Behavior Control[J]. Acta Phytophysiologica Sinica, 2005, 27(3):193-200.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwslxb200103001 [8] WINTERHALTER P. Volatile compounds in foods and beverages[M].New York: Marcel Dekker, 1991:389-409. [9] CANUTO K M, de Souza M A, GARRUTID D. Volatile chemical composition of mango fruit 'Tommy Atkins', cultivated in San Francisco valley, at different stages of maturity[J]. Quimica Nova, 2009, 32(9): 2377-2381. [10] PANDITS S, KULKARNIR S, CDLEY H G, et al. Changes in volatile composition during fruit development and ripening of Alphonso mango[J]. Journal Science Food Agricultury, 2009, 89(12): 2071-2081. doi: 10.1002/jsfa.v89:12 [11] 田厚军, 陈艺欣, 魏辉, 等, 芒果不同部位挥发物及横线尾夜蛾对其触角电位反应[J].生物安全学报, 2012, 21(2): 142-147. doi: 10.3969/j.issn.2095-1787.2012.02.012TIAN H J, CHEN Y X, WEI H, et al. Volatiles emitted by mango (Mangifera indica) plants and electrophysiological responses of Chlumetia transverse to such volatiles[J]. Journal of Biosafety, 21(2): 142-147.(in Chinese) doi: 10.3969/j.issn.2095-1787.2012.02.012 [12] 肖春芬, 黄秋妹, 李永冲, 等. 3-芳基香豆素类化合物抗肿瘤活性研究进展[J].广州化学, 2018, 43(06), 72-78. http://d.old.wanfangdata.com.cn/Periodical/gzhx201806014XIAO C F, HUANG Q M, LI Y C, et al. Progress in the Anti-tumor Activity of 3-Aryl Coumarins[J]. Guangzhou Chemistry, 2018, 43(6), 72-78.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gzhx201806014 [13] BERENBAUM M R, ZANGERL A R. Furanocoumarin metabolism in Papiliopolyxenes: biochemistry, genetic variability, and ecological significance[J].Oecologia, 1993, 95:370-375. doi: 10.1007/BF00320991 [14] WITTSTOCK U, BUROW M. Glucosinolate breakdown in Arabidopsis:mechanism, regulation and biological significance[J]. The Arabidopsis Book, 2010(8): e0134. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3244901 [15] AUGUSTYNA W A, BOTHAA B M, COMBRINCKA S, et al. Correlation of volatile profiles of twenty mango cultivars with their susceptibilities to mango gall fly infestation[J]. South African Journal of Botany, 2012, 76(4):710-716. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48fc1417dc13acb379c21c1be8cf24d1 [16] 张季林, 魏惠珍, 张洁. β-石竹烯生物学功能的研究进展[J].山东医药, 2018, 58(3):110-112. doi: 10.3969/j.issn.1002-266X.2018.03.035ZHANG J L, WEI H Z, ZHANG J. Advances in biological functions of beta-caryophyllene[J]. Shandong Medical Journal, 2018, 58(3):110-112.(in Chinese) doi: 10.3969/j.issn.1002-266X.2018.03.035 [17] PICHERSKY E, GERSHENZON J. The formation and function of plant volatiles: perfumes for pollinator attraction and defense[J]. Current Opinion of Plant Biology, 2002, 5(3): 237-243. doi: 10.1016/S1369-5266(02)00251-0 [18] 王红伟, 杨伟, 杨桦, 等.横坑切梢小蠹对植物挥发物的电生理和行为反应[J].生态学杂志, 2014, 33 (5):1260-266. http://d.old.wanfangdata.com.cn/Periodical/stxzz201405020WANG H W, YANG W, YANG H, et al, Electroan-tennogram and behavioral responses of Tomicus minor(Hartig)(Coleoptera:Scolytidae) to plant volatiles[J]. Chinese Joural of Ecology, 2014, 33 (5):1260-1266.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/stxzz201405020 [19] BRUCE T J A and PICKETT J A. Perception of plant volatile blends by herbivorous insects Finding the right mix[J]. Phytochemistry, 2011, 72(13): 1605-1611. doi: 10.1016/j.phytochem.2011.04.011