Preliminary Study on Molecular Mechanism of Variegated Haworthia magnifica Formation
-
摘要:
目的 以青蟹寿及其全锦突变体qj为材料,研究多肉植物锦化变异分子机理。 方法 利用分光光度计法、转录组测序(RNA-seq),分别测量其叶绿素、类胡萝卜素含量及其相关基因的表达水平,并筛选差异显著的相关代谢途径。 结果 结果表明,qj的叶绿素a、叶绿素b、类胡萝卜素的含量显著下降;对青蟹寿及qj叶片转录组测序分别获得44 988 938和37 271 576条Reads,经过滤拼接组装得到45 226条Unigene;所得Unigene的Nr注释分类中有26 999条,Swissport注释有20 279条,KOG注释有16 943条,KEGG注释有10 775条;筛选获得表达差异显著基因共20 305条,涉及130个途径,其中21个途径差异显著。筛选得到的叶绿素合成途径(ko00860)、天线蛋白(ko00196)和光合作用途径(ko00195)的基因表达对比分析,结果表明这3个途径的基因普遍显著下调表达。 结论 初步探索了多肉植物锦化变异的转录组信息,筛选到表达差异显著的基因及途径,为进一步研究多肉植物锦化变异机制提供了基础。 Abstract:Objective Molecular mechanism responsible for the formation of variegated succulent plants, Haworthia magnifica, was investigated using the mutant qj for the comparison. Method Contents of chlorophylls and carotenoids in the plants were determined by spectrophotometry, and gene expression by transcriptome sequencing (RNA-seq). Result The contents of chlorophyll a, chlorophyll b and carotenoids in the variegated qj were significantly lower than those of wild-type H. magnifica. Using RNA-seq, 44 988 938 Reads were obtained for H. magnifica and 37 271 576 for qj which were assembled into 45 226 Unigenes. There were 26 999 Unigenes assigned to Nr annotations, 20 279 to Swissport, 16 943 to KOG categories, and 10 775 to KEGG pathway. A total of 20 305 genes exhibited significantly different expressions that involved 130 pathways, of which 21 significantly differed from the others. The gene expression analysis showed that the genes associated with the chlorophyll synthesis (ko00860), antenna protein (ko00196) and photosynthesis (ko00195) pathways were generally significantly down-regulated. Conclusion The significant variations on the transcriptome sequences, genes and pathways of H. magnifica and its variegated counterpart obtained from this study provided the fundamental information for further study to unveil the underlaying mechanism. -
Key words:
- succulent plants /
- variegated variation /
- transcriptome /
- photosynthesis
-
图 1 WT与qj中叶绿素a、b和类胡萝卜素含量
注:A为野生型(WT)与突变体(qj)的表型,标尺=0.5 cm;B为WT和qj的叶绿素a、b、类胡萝卜素含量;*为P<0.05显著差异,**为P<0.01极显著差异。
Figure 1. The content difference of Chlorophyll a, chlorophyll b and carotenoid in WT and qj
Note:A: Phenotype of WT and qj, scale bar=0.5 cm; B: Differences on contents of chlorophyll a, chlorophyll b and carotenoids in WT and qj; *P<0.05, **P < 0.01.
图 5 光合途径基因下调表达
注:A为光系统Ⅰ差异基因下调表达;B为F型ATP酶差异基因下调表达;C为细胞色素b6/f复合体差异基因下调表达;D为光系统Ⅱ差异基因下调表达;E为光合作用电子传递链差异基因下调表达。
Figure 5. Down-regulated expressions of genes in photosynthetic pathway
Note:A: Down-regulated expression of genes in photosystem Ⅰ; B: Down-regulated expression of genes in F-type ATPase; C: Down-regulated expression of genes in cytochrome b6/f complex; D: Down-regulated expression of genes in photosystem Ⅱ; E: Down-regulated expression of genes in photosystem in photosynthetic electron transport.
表 1 测序质量评估
Table 1. Statistics on sequencing
样品
Sample过滤前read数
Before filter read numberQ20/% Q30/% G+C/% 过滤后read数
After filter read numberQ20/% Q30/% WT 44988938 97.26 93.13 49.52 43871136(97.52) 98.38 94.88 qj 37271576 97.13 92.94 48.86 36263612(97.30) 98.35 94.82 -
[1] 钱秀苇, 孙莉, 徐晔春.泛谈多肉植物[J].园林, 2014(1):12-16. http://d.old.wanfangdata.com.cn/Periodical/yuanlin201401002QIAN X W, SUN L, XU Y C. Succulent plants[J]. Garden, 2014(1):12-16.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/yuanlin201401002 [2] 郭伟.浅谈多肉植物产业的发展[J].中国花卉盆景, 2004(12):30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200401952432GUO W. The development of succulent industry[J]. China Flower & Penjing, 2004(12):30.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200401952432 [3] 郭生虎, 朱永兴, 关雅静.百合科十二卷属玉露的组培快繁关键技术研究[J].中国农学通报, 2016, 32(34):85-89. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201634015GUO S H, ZHU Y X, GUANG Y J. Key Techniques for Rapid Propagation of Haworthia cooperi var. pilfera of Liliaceae[J]. Chinese Agricultural Science Bulletin, 2016, 32(34):85-89.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201634015 [4] 朱天华, 陆锦明, 孙清, 等.十二卷类植物的离体培养技术研究[J].上海交通大学学报(农业科学版), 2012, 30(3):45-48. doi: 10.3969/J.ISSN.1671-9964.2012.03.008ZHU T H, LU J M, SUN Q, et al. Study on the Culture of Haworthia fasciata in vivo[J]. Journal of Shanghai Jiaotong University (Agricultural Science Editiom).2012, 30(3):45-48.(in Chinese) doi: 10.3969/J.ISSN.1671-9964.2012.03.008 [5] 兑宝峰, 郭斐.多肉植物斑锦变异[J].中国花卉园艺, 2018(4):30-31. doi: 10.3969/j.issn.1009-8496.2018.04.011DUI B F, GUO F. The variegated variabilis of Succulent plants[J]. China Flowers & Horticulture, 2018(4):30-31.(in Chinese) doi: 10.3969/j.issn.1009-8496.2018.04.011 [6] 上海西萍园艺有限公司.瓦苇属多肉植物写真集[M].上海:上海人民出版社, 2016.SHANGHAI XIPING HORTICULTURE Co., Ltd.Haworthia Unique Collections[M].Shanghai:Shanghai Renmin Chubanshe, 2016.(in Chinese) [7] 张伏, 张亚坤, 毛鹏军, 等.植物叶绿素测量方法研究现状及发展[J].农机化研究, 2014, 4(4):238-241. doi: 10.3969/j.issn.1003-188X.2014.04.057ZHANG F, ZHANG Y K, MAO P J, et al. The research and development of Plant chlorophyll measurement method[J]. Journal of Agricultural Mechanization Research, 2014, 4(4):238-241.(in Chinese) doi: 10.3969/j.issn.1003-188X.2014.04.057 [8] 胡秉芬, 黄华话, 季元祖, 等.分光光度法测定叶绿素含量的提取液的适宜浓度[J].草业科学, 2018, 35(8):1965-1974. http://d.old.wanfangdata.com.cn/Periodical/caoyekx201808018HU B F, HUANG H H, JI Y Z, et al. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry[J]. Pratacultural Science, 2018, 35(8):1965-1974.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/caoyekx201808018 [9] 吴飞燕, 伊力塔, 李修鹏, 等.不同光照强度对石栎幼苗叶绿素含量及叶绿素荧光参数的影响[J].东北农业大学学报, 2012, 43(4):88-92. doi: 10.3969/j.issn.1005-9369.2012.04.016WU F Y, YI L T, LI X P, et al. Effect of different light intensity on intensity chlorophyll content and chlorophyll fluorescence in Lithocarpus glaber[J]. Journal of Northeast Agricultural University, 2012, 43(4):88-92.(in Chinese) doi: 10.3969/j.issn.1005-9369.2012.04.016 [10] 周振翔, 李志康, 陈颖, 等.叶绿素含量降低对水稻叶片光抑制与光合电子传递的影响[J].中国农业科学, 2016, 49(19):3709-3720. doi: 10.3864/j.issn.0578-1752.2016.19.004ZHOU Z X, LI Z K, CHEN Y, et al.Effects of Reduced Chlorophyll Content on Photoinhibition and Photosynthetic Electron Transport in Rice Leaves[J]. Scientia Agricultura Sinica, 2016, 49(19):3709-3720.(in Chinese) doi: 10.3864/j.issn.0578-1752.2016.19.004 [11] 吴自明, 张欣, 万建民.叶绿素生物合成的分子调控[J].植物生理学通讯, 2008, 44(6):1064-1068. http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200806002WU Z M, ZHANG X, WANG J M. Molecular Regulation of chlorophyll Biosynthesis[J]. Plant Physiology Communications, 2008, 44(6):1064-1068.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwslxtx200806002 [12] 王平荣, 张帆涛, 高家旭, 等.高等植物叶绿素生物合成的研究进展[J].西北植物学报, 2009, 290(3):629-636. doi: 10.3321/j.issn:1000-4025.2009.03.032WANG P R, ZHANG F T, GAO J X, et al. An Overview of Chlorophyll Biosynthesis in Higher Plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2009, 290(3):629-636.(in Chinese) doi: 10.3321/j.issn:1000-4025.2009.03.032 [13] LIU X Q, LI Y, ZHONG S W. Interplay between Light and Plant hormones in control of Arabidopsis Seedling Chlorophyll Biosynthesis.[J]Frontiers in plant science, 2017, 8:1433. doi: 10.3389/fpls.2017.01433 [14] GAlABADI D, GALLEGO-BARTOLOME J, ORLANDO L, et al.Gibberellins modulate light signaling pathways toprevent Arabidopsis seedling de-etiolation in darkness[J]. Plant J, 2008, 53:324-335. http://cn.bing.com/academic/profile?id=8a28c9a9337d909be37a95f5dbad4d58&encoded=0&v=paper_preview&mkt=zh-cn [15] LU W, CHUAN Y, HONGLI C, et al. Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar[J]. BMC Plant Biol, 2014, 14:352. doi: 10.1186/s12870-014-0352-x [16] LI X, KANAKALA S, HE Y, et al. Physiological Characterization and Comparative Transcriptome Analysis of White and Green Leaves of Ananas comosus var bracteatus[J]. PLoS One, 2017, 12(1):1-17. https://www.ncbi.nlm.nih.gov/pubmed/28095462 [17] 蒋会兵, 夏丽飞, 田易萍, 等.基于转录组测序的紫芽茶树花青素合成相关基因分析[J].植物遗传资源学报, 2018(5):967-978. http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201805017JIANG H B, XIA L F, TIAN Y P, et al. Transcriptome Analysis of Anthocyanin Synthesis Related Genes in Purple Bud Tea Plant[J]. Journal of Plant Genetic Resources, 2018(5):967-978.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201805017 [18] LAI B, HU B, QIN Y H, et al. Transcriptomic analysis of Litchi chinensis pericarpduring maturation with a focus on chlorophyll degradation and flavonoid biosynthesis[J]. BMC Genomics (2015) 16:225. doi: 10.1186/s12864-015-1433-4 [19] 高俊凤.植物生理学实验指导[M].北京:高等教育出版社, 2006:71-77GAO J F.Experimental Guidance for Plant Physiology[M].Beijing:Higher Education Press, 2006:71-77.(in Chinese) [20] CONESA A S, GOOTZ, TEROLJ, et al. Blast 2 GO:a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18):3674-3676. doi: 10.1093/bioinformatics/bti610 [21] YE J, FANG L, ZHENG H, et al.WEGO:a web tool for plotting go annotations[J].Nucleic Acids, 2006, Res 34(Web Server issue):293-297. http://d.old.wanfangdata.com.cn/Periodical/zgkqzzxzz201402009