The Species and Diversity of Mites Associated with the Red Palm Weevil Rhynchophorus ferrugineus (Olivier) in Xiamen Park Expo Garden
-
摘要: 螨类与昆虫之间存在密切关系。对厦门园博园内红棕象甲Rhynchophorus ferrugineus体表螨的种类进行鉴定,结果发现了5种螨,分属于尾足螨科与薄口螨科,其中尾足螨科的Centrouropoda almerodai数量最多,主要分布于鞘翅内表面,为优势种(优势度指数0.366),空间生态位宽度为0.05;数量第二的为薄口螨科的Curculanoetus sp.(优势度指数0.059),占据空间生态位最宽(0.47),在腹部背面、膜翅、鞘翅内表面上均有分布。由此可见,红棕象甲上的不同螨在数量和空间分布上具有种特异性。Abstract: There is a close relationship between mites and insects. In this study, five different mite species belonging to 2 families (Uropodidae and Histiostomatidae) were found on Rhynchophorus ferrugineus collected from the Garden of Expo Park in Xiamen. Centrouropoda almerodai was the most abundant mite species and mainly located at sub-elytra of RPW, which was the dominant species with the dominance index of 0.366 and the spatial niche breadth of 0.05. Although the dominance index of Curculanoetus sp. was 0.059 (less than that of C. almerodai), this mite had the widest spatial niche breadth of 0.47 and mainly located at abdominal dorsum, membranous wings and sub-elytra. Therefore, population and spatial distribution of mites on R. ferrugineu were species-specific.
-
Key words:
- Rhynchophorus ferrugineus /
- mite /
- niche
-
表 1 厦门园博园内红棕象甲成虫体表螨的种类及其分布部位
Table 1. The species and distribution of mites on RPW in Xiamen
种类 平均密度/(螨·头-1) 附着部位 Centrouropoda almerodai 67.88±37.07 a 鞘翅内表面、膜翅 Uropodidae sp. 4.56±1.72 b 鞘翅内表面、腹部背面、膜翅 Histiostomatidae sp. 8.44±3.95 b 鞘翅内表面、腹部背面、膜翅 Curculanoetus sp. 7.48±3.36 b 鞘翅内表面、腹部背面、膜翅 Uroobovella javae 2.40±1.50 b 胸部,足 注:同列数据后不同小写字母表示差异显著(P < 0.05)。 表 2 厦门园博园内红棕象甲成虫体表螨的种群特征
Table 2. The of mite on RPW in Xiamen
种名 优势度 生态位宽度 扩散系数 聚集指数 Centrouropoda almerodai 0.366 0.05 127.20 126.20 Uropodidae sp. 0.010 0.40 56.95 62.64 Histiostomatidae sp. 0.022 0.44 63.64 55.95 Curculanoetus sp. 0.059 0.47 66.59 65.59 Uroobovella javae 0.005 0.00 57.66 56.66 -
[1] PERNEK M, HRASOVEC B, MATOSEVIC D, et al. Phoretic mites of three bark beetles (Pityokteines spp.) on silver fir[J].Journal of Pest Science, 2008, 81(1):35-42. doi: 10.1007/s10340-007-0182-9 [2] BŁOSZYK J, GUTOWSKI J M, GWIAZDOWICZ D J, et al. Phoresy of Trichouropoda shcherbakae, Hirschmann, 1972(Acari:Mesostigmata) on beetles of the genus Tetropium, Kirby, 1837(Coleoptera:Cerambycidae) in Białowiea Forest, Poland[J].Central European Journal of Biology, 2013, 8(10):986-992. [3] BŁOSZYK J, GUTOWSKI J M, GWIAZDOWICZ D J.Monochamus sartor (Coleoptera:Cerambycidae) contributes to alpha diversity of Uropodina mites (Acari:Mesostigmata) in first stage of wood decay in Białowiea Primeval Forest[J].International Journal of Acarology, 2016, 42(4):218-223. doi: 10.1080/01647954.2016.1154890 [4] 万方浩, 侯有明, 蒋明星.入侵生物学[M].北京:科学出版社, 2015. [5] ABRAHAM V A, KOYA K M A, KURIAN C. Evaluation of seven insecticides for control of red palm weevil Rhynchophorus ferrugineus Fabr.[J].Journal of Plantation Crops, 1975(3):71-72. https://www.cabdirect.org/cabdirect/abstract/19760533827 [6] JU R T, WANG F, WAN F H, et al. Effect of host plants on development and reproduction of Rhynchophorus ferrugineus (Olivier) (Coleoptera:Curculionidae)[J].Journal of Pest Science, 2011, 84(1):33-39. doi: 10.1007/s10340-010-0323-4 [7] EL-MERGAWY R A A M, AJLAN A M. Studies on the molecular phylogeny of Coleoptera:Curculionidae, Staphylinidae and Carabidae based on the mitochondrial cytochrome oxidasel gene[J].Journal of Agricultural Science and Technology A, 2011, 61(6):866-875. [8] LI Y, ZU Z R, JU R T, et al. The red palm weevil, Rhynchophorus ferrugineus (Coleoptera:Curculionidae), newly reported from Zhejiang, China and update of geographical distribution[J].Florida Entomologist, 2009, 92:386-387. doi: 10.1653/024.092.0229 [9] PU Y C, HOU Y M. Isolation and identification of bacterial strains with insecticidal activities from Rhynchophorus ferrugineus oliver (coleoptera:curculionidae)[J].Journal of Applied Entomology, 2016,140(8):617-626. doi: 10.1111/jen.2016.140.issue-8 [10] GE X Z, HE S Y, WANG T, et al. Potential distribution predicted for Rhynchophorus ferrugineus in China under different climate warming scenarios[J].PLoS ONE, 2015, 10(10):e141111. [11] DILIPKUMAR M, AHADIYAT A, MA N P, et al. Mites (Acari) associated with Rhynchophorus ferrugineus, (Coleoptera:Curculionidae) in Malaysia, with a revised list of the mites found on this weevil[J].Journal of Asia-Pacific Entomology, 2015, 18(2):169-174. doi: 10.1016/j.aspen.2014.12.010 [12] AL-DEEB M A, MUZAFFAR S B, ABUAGLA A M, et al. Distribution and abundance of phoretic mites (Astigmata, Mesostigmata) on Rhynchophorus ferrugineus (Coleoptera:Curculionidae)[J].Florida Entomologist, 2011, 94(4):748-755. doi: 10.1653/024.094.0403 [13] AL-DEEB M A, MUZAFFAR S B, SHARIF E M. Interactions between phoretic mites and the Arabian rhinoceros beetle, Oryctes agamemnon Arabicus[J].Journal of Insect Science, 2012,128(12):237-239. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3637038 [14] 张金屯.数量生态学[M].北京:科学出版社, 2011. [15] 徐兆礼, 陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鳢渔场的关系[J].生态学杂志, 1989(19):13-15. http://www.cnki.com.cn/article/cjfd1989-stxz198904002.htm [16] 徐晓群, 曾江宁, 陈全震, 等.浙江三门湾浮游动物优势种空间生态位[J].应用生态学报, 2013, 24(3):818-824. http://d.old.wanfangdata.com.cn/Periodical/yystxb201303031 [17] 武玉珍, 张峰.山西桑干河流域湿地植被优势种群分布格局研究[J].植物研究, 2006, 26(6):735-741. doi: 10.3969/j.issn.1673-5102.2006.06.019 [18] KRANTZ G W. A manual of acarology[J].Bulletin of the Entomological Society of America, 1978, 24(4):440. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000006400914 [19] 邹萍, 高建荣.蘑菇螨类的常见种类介绍[J].食用菌, 1987, 9(3):19-30. [20] FARAHANI V F, AHADIYAT A, MA N P, et al. Phoretic uropodine mites (Acari:Mesostigmata) associated with the red palm weevil, Rhynchophorus ferrugineus (Coleoptera:Curculionidae) in Iran[J].Journal of Entomological and Acarological Research, 2016, 48(3):317-322. doi: 10.4081/jear.2016.5853 [21] WIS'NIEWSKI J. Gang systematics of the parasitiformers, 389. Stages of new Uroobovella species (Dinychni, Uropodinae) of the costai group from Java and The Gold Coast[J].Acarologie. Schriftenreihe für vergleichende Milbenkunde, 1981, 28:87-89. [22] NIOGRET J, LUMARET J P, BERTRAND M. Semiochemicals mediating host-finding behaviour in the phoretic association between Macrocheles saceri (Acari:Mesostigmata) and Scarabaeus species (Coleoptera:Scarabaeidae)[J].Chemoecology, 2006, 16(3):129-134. doi: 10.1007/s00049-006-0338-8 [23] SZYMKOWIAK P, G RSKI G, BAJERLEIN D. Passive dispersal in arachnids[J].Biological Letters, 2007, 44(2):75-101. [24] 白晓航, 张金屯, 曹科, 等.河北小五台山国家级自然保护区森林群落与环境的关系[J].生态学报, 2017, 37(11):3683-3696. http://d.old.wanfangdata.com.cn/Periodical/stxb201711010 [25] FERNÁNDEZ-GONZÁLEZ S, PÉREZ-RODRíGUEZ A, HERA I D L, et al. Different space preferences and within-host competition promote niche partitioning between symbiotic feather mite species[J].International Journal for Parasitology, 2015, 45(9-10):655. doi: 10.1016/j.ijpara.2015.04.003 [26] LAWSON-BALAGBO L M, JR G M, DE MORAES G J, et al. Compatibility of Neoseiulus paspalivorus and Proctolaelaps bickleyi, candidate biocontrol agents of the coconut mite Aceria guerreronis:spatial niche use and intraguild predation[J].Experimental & Applied Acarology, 2008, 45(1-2):1. [27] COSTA M. Mites of the genus Hypoaspis Canestrini 1884 s. str. and related forms (Acari:Mesostigmata) associated with beetles[J].Bulletin of the British Museum (Natural History) Zoology, 1971, 21:67-98. [28] PULLIAM H R. Sources, sinks, and population regulation[J].American Naturalist, 1988,132(5):652-661. doi: 10.1086/284880 [29] RODENHOUSE N L, SHERRY T W, HOLMES R T. Site-dependent regulation of population size:a new synthesis[J].Ecology, 1997, 78(7):2025-2042.