Resistance on Rice Blast of Knockout Mutants of Pi-d2, Pi-d3 and Pigm
-
摘要: 谷丰B是一个广谱高抗稻瘟病水稻保持系,含有稻瘟病抗性基因Pi-d2,Pi-d3和Pigm。为了进一步明确3个抗性基因在谷丰B中的作用,本研究利用CRISPR/Cas9多基因编辑系统构建了共敲除Pi-d2+Pi-d3+Pigm基因载体。通过遗传转化试验以及DNA测序,T0代植株获得多种突变体组合类型。对其中的Pi-d2、Pigm、Pi-d2+Pi-d3、Pi-d2+Pigm、Pi-d2+Pi-d3+Pigm等5种纯合突变体的T1代株系进行稻瘟病室内接种鉴定,研究结果表明,Pi-d2、Pi-d3和Pigm分别对86/501-3、KJ201/CHE86061和86/CHE86061/501-3的菌株存在显著的抗性效应,Pi-d2+Pi-d3,Pi-d2+Pigm和Pi-d2+Pi-d3+Pigm的敲除株系的抗性不完全等同于单个基因的简单叠加,其中Pi-d2+Pi-d3+Pigm的突变体对菌株CHL768表现完全不同于其他类型突变体的感病性。上述结果为解析广谱高抗稻瘟病水稻材料谷丰B的抗性遗传机理提供重要信息,也为水稻稻瘟病抗病育种研究提供参考。
-
关键词:
- CRISPR/Cas9 /
- 水稻 /
- 稻瘟病 /
- 抗性基因
Abstract: Gufeng B is a broad-spectrum, high resistance maintainer line to rice blast. Its blast resistance genes, Pi-d2, Pi-d3 and Pigm, were identified using the molecular marker technology. To study and verify the role of these genes, their multiple sites editing vectors were constructed by the high-efficiency and designated-editing CRISPR/Cas9 system. The vectors were subsequently transformed to Gufeng B by means of the agrobacterium-mediated method. Through the mutant analysis targeting mutation types, a variety of combinations in the T0 plants was found. The indoor inoculation of the T1 generation of 5 homozygous mutants indicated that Pi-d2, Pi-d3 and Pigm were significantly resistant to 86/501-3, KJ201/CHE86061 and 86/CHE86061/501-3. The resistance of the knockout lines of Pi-d2+Pi-d3, Pi-d2+Pigm and Pi-d2+Pi-d3+Pigm showed a simple superposition that was not completely equivalent to a single gene. The mutant of Pi-d2+Pi-d3+Pigm had a completely different sensitivity to CHL768 from the other mutants. This study unveiled genetic information on the blast resistance of Gufeng B of value for rice breeding.-
Key words:
- CRISPR/Cas9 /
- rice /
- rice blast /
- resistant gene
-
图 1 Pigm、Pi-d2和Pi-d3多基因编辑载体构建
注:(A)Pigm、Pi-d2和Pi-d3多基因编辑载体结构。(B)gRNA表达盒电泳检测。M为DL 2 000 Plus DNA Marker;1为u6b-Pigm-gRNA表达盒;2为u6a-Pi-d2-gRNA表达盒;3为u6b-Pi-d2-gRNA表达盒;4为u6a-Pi-d3-gRNA表达盒;5为u6b-Pi-d2-gRNA表达盒。(C)Pigm、Pi-d2和Pi-d3多基因编辑载体菌落PCR检测。M为DL 2 000 Plus DNA Marker;1为不含模板的空白对照;2~11为单菌落PCR产物。
Figure 1. Construction of Pigm, Pi-d2 and Pi-d3 multi-gene editing vectors
表 1 本研究所用的引物
Table 1. Primers applied
引物名称 引物序列 用途 Pigm-u6b-F GTTGGATACGGATAGCGATCCGG 构建Pigm敲除载体 Pigm-u6b-R AAACCCGGATCGCTATCCGTATC Pi-d2-u6a-F GCCGAAGTCATCTGAATGGGTGAC 构建Pi-d2敲除载体 Pi-d2-u6a-R AAACGTCACCCATTCAGATGACTT Pi-d2-u6b-F GTTGAATGCCTTCCTGCAGTCAGG 构建Pi-d2敲除载体 Pi-d2-u6b-R AAACCCTGACTGCAGGAAGGCATT Pi-d3-u6a-F GCCGCCTCTTTTCTGAGATCCGGG 构建Pi-d3敲除载体 Pi-d3-u6a-R AAACCCCGGATCTCAGAAAAGAGG Pi-d3-u6b-F GTTGCCGCGTTCGTCAAGCAGGTG 构建Pi-d3敲除载体 Pi-d3-u6b-R AAACCACCTGCTTGACGAACGCGG Cas9-Pigm-F GAAAGACGAACTATTAAAGG Pigm敲除载体测序鉴定 Cas9-Pigm-R TGATCCAGAGAACTGGGGCC Cas9-Pi-d2-F GCTCTGTCTTTGGCTTTGGT Pi-d2敲除载体测序鉴定 Cas9-Pi-d2-R GCTCTGTCTTTGGCTTTGGT Cas9-Pi-d3-F GTGTTGTGGGCTCACTAATC Pi-d3敲除载体测序鉴定 Cas9-Pi-d3-R CAGCAAATCCCTCTTCTTCT HPT-F AAGCTGCATCATCGAAATTG 潮霉素鉴定 HPT-R TCGTTATGTTTATCGGCACT 表 2 突变株系与对照株系的稻瘟病抗性鉴定结果
Table 2. Blast-resistance of mutant and control lines as evaluated by fungal inoculation
材料抗性等级 菌株 KJ201 86 CHE86061 501-3 CHL768 CHL2110 谷丰B 0 0 0 0 0 4 GFB234-5(Pi-d2) 0 3 0 5 0 4 GFB234-3(Pigm) 0 4 5 5 0 4 GFB234-11(Pi-d2+ Pi-d3) 2 3 4 5 0 4 GFB234-8(Pigm+ Pi-d3) 1 4 4 5 0 4 GFB234-15(Pigm+Pi-d2+ Pi-d3) 4 4 4 5 3 4 -
[1] 兰新芝.稻瘟病及综合防控技术[J].农民致富之友, 2013(6):122-122. http://d.old.wanfangdata.com.cn/Periodical/nmzfzy201306101 [2] 杨海河, 毕冬玲, 张玉, 等.基于CRISPR/Cas9技术的水稻pi21基因编辑材料的创制及稻瘟病抗性鉴定[J].分子植物育种, 2017, 15(11):4451-4465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fzzwyz201711019 [3] 沈兰, 华宇峰, 付亚萍, 等.利用CRISPR/Cas9多基因编辑系统在水稻中快速引入遗传多样性[J].中国科学:生命科学, 2017, 47(11):1186-1195. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cc201711007 [4] 胡雪娇, 杨佳, 程灿, 等.利用CRISPR/Cas9系统定向编辑水稻SD1基因[J].中国水稻科学, 2018, 32(3):219-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201803002 [5] SHAN Q, WANG Y, LI J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system.[J]. Nature Biotechnology, 2013, 31(8):686-688. doi: 10.1038/nbt.2650 [6] ZHEN, LIANG, KANG, et al. Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System[J]. Journal of Genetics and Genomics, 2014, 41(2):63-68. doi: 10.1016/j.jgg.2013.12.001 [7] WANG Y, CHENG X, SHAN Q, et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew[J]. Nature Biotechnology, 2014, 32(9):947-951. doi: 10.1038/nbt.2969 [8] BROOKS C, NEKRASOV V, LIPPMAN Z B, et al. Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System[J]. Plant Physiology, 2014,166(3):1292-7. doi: 10.1104/pp.114.247577 [9] 黄利兴, 张以华, 游年顺, 等.抗稻瘟病水稻不育系谷丰A的选育与利用[J].杂交水稻, 2013, 28(5):6-10. http://www.cnki.com.cn/Article/CJFDTotal-ZJSD201305002.htm [10] 高利军, 邓国富, 高汉亮, 等.水稻抗稻瘟病基因Pi-d2基因标签的建立与应用[J].西南农业学报, 2010, 23(1):77-82. doi: 10.3969/j.issn.1001-4829.2010.01.017 [11] SHANG J, TAO Y, CHEN X, et al. Identification of a New Rice Blast Resistance Gene, Pid3, by Genomewide Comparison of Paired Nucleotide-Binding Site-Leucine-Rich Repeat Genes and Their Pseudogene Alleles Between the Two Sequenced Rice Genomes[J]. Genetics, 2009,182(4):1303-1311. doi: 10.1534/genetics.109.102871 [12] 曾生元, 龚红兵, 李闯, 等.谷梅4号抗稻瘟病基因Pigm的分子标记及其应用: 中国CN 106148335A[P].2016-09-26. [13] ZHOU B, QU S, LIU G, et al. The Eight Amino-Acid Differences Within Three Leucine-Rich Repeats Between Pi2 and Piz-t Resistance Proteins Determine the Resistance Specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19(11):1216-1228. doi: 10.1094/MPMI-19-1216 [14] HUA L, WU J, CHEN C, et al. The isolation of Pi1, an allele at the Piklocus which confers broad spectrum resistance to rice blast[J]. Theoretical & Applied Genetics, 2012,125(5):1047-1055. doi: 10.1007/s00122-012-1894-7?view=classic [15] ZHAI C, LIN F, DONG Z, et al. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist, 2011,189(1):321-334. doi: 10.1111/j.1469-8137.2010.03462.x [16] 曾栋昌, 马兴亮, 谢先荣, 等.植物CRISPR/Cas9多基因编辑载体构建和突变分析的操作方法[J].中国科学:生命科学, 2018, 48(7):783-794. http://www.cnki.com.cn/Article/CJFDTotal-JCXK201807008.htm [17] 张凤娟, 张满良, 朱水芳.一种改进的水稻总DNA的快速提取方法[J].植物检疫, 2004(6):330-332. doi: 10.3969/j.issn.1005-2755.2004.06.004 [18] IRRI. Standard evaluation system for rice[M]. Manila: 1996: 17-18. [19] LI J, MENG X, ZONG Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9.[J]. Nat Plants, 2016, 2(10):16139. doi: 10.1038/nplants.2016.139 [20] ZHANG Y, BAI Y, WU G, et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat[J]. Plant Journal for Cell & Molecular Biology, 2017, 91(4):714. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3a1226d6a532dec52629e1898e48e3ad [21] WANG F, WANG C, LIU P, et al. Enhanced Rice Blast Resistance by CRISPR/Cas9-Targeted Mutagenesis of the ERF Transcription Factor Gene OsERF922[J]. Plos One, 2016, 11(4):e0154027. doi: 10.1371/journal.pone.0154027 [22] 王芳权, 范方军, 李文奇, 等.利用CRISPR/Cas9技术敲除水稻Pi21基因的效率分析[J].中国水稻科学, 2016, 30(5):469-478. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgsdkx201605004 [23] BOLLER T, FELIX G. A Renaissance of Elicitors:Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors[J]. Annual Review of Plant Biology, 2009, 60(1):379-406. doi: 10.1146/annurev.arplant.57.032905.105346 [24] NURNBERGER THORSTEN, BRUNNER FRÉDÉRIC, KEMMERLING B, et al. Innate immunity in plants and animals:striking similarities and obvious differences[J]. Immunological Reviews, 2010,198(1):249-266. doi: 10.1111/j.0105-2896.2004.0119.x?globalMessage=0 [25] JIA Y, MCADAMS S A, BRYAN G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance.[J]. Embo Journal, 2014, 19(15):4004-4014. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_306585 [26] WU W, WANG L, ZHANG S, et al. Stepwise Arms Race Between AvrPik and Pik Alleles in the Rice Blast Pathosystem[J]. Mol Plant Microbe Interact, 2014, 27(8):759-769. doi: 10.1094/MPMI-02-14-0046-R [27] OKUYAMA Y, KANZAKI H, ABE A, et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes.[J]. Plant Journal, 2011, 66(3):467-479. doi: 10.1111/j.1365-313X.2011.04502.x