Cu and Zn Accumulations in Myriophyllum spicatum for Purification of Pig Farm Biogas Slurry
-
摘要: 采用室外水培试验,研究在不同水力停留时间(20、40、60d),狐尾藻对生猪养殖场沼液Cu、Zn的富集能力。结果表明:当水力停留时间为60 d时,狐尾藻生物量最大,可达1 475.00 g,是对照组的7.40倍,其对沼液Cu、Zn的积累量也最大,分别为7.66 mg·kg-1和64.18 mg·kg-1,且狐尾藻对Zn的富集能力大于Cu;当水力停留时间为40 d时,狐尾藻对沼液的净化效果最好,CODCr、氨氮和总磷去除率分别可达92.40%、92.03%、74.39%。试验结束后,狐尾藻体内有机质、氮、磷、钾含量,相比对照组分别提高7.62%~12.57%、30.62%~69.38%、5.88%~12.94%和3.85%~21.15%;狐尾藻体内Cu、Zn含量分别为:6.76~10.78、77.63~130.60 mg·kg-1,符合GB26419-2010及我国农业行业标准NY929-2005。因此狐尾藻富集沼液Cu、Zn收割后可以作为青饲料加以利用,净化沼液同时避免二次污染。Abstract: The ability of Myriophyllum spicatum to absorb and accumulate Cu and Zn from pig farm biogas slurry was studied. Hydraulic residence time (HRT) of 20, 40 and 60 d were applied for the plants in the study. It was found that the maximum biomass of the plants in 40 d of HRT reached 1 475.00 g, which was 7.40 times higher than that of control. More importantly, the Cu and Zn accumulations in the plants were 7.66 mg·kg-1 and 64.18 mg·kg-1, respectively, which were significantly greater than those in control. The metal removal from the slurry by the plants was at the highest levels when 40 d HRT was applied as well. The reductions on COD, ammonia nitrogen and total phosphorus on the slurry were 92.40%, 92.03% and 74.39%, respectively. After the HRT test the plants had increases of 7.62%-12.57% on organic matters, 30.62%-69.38% on N, 5.88%-12.94% on P, and 3.85%-21.15% on K, as well as contents of 6.76-10.78 mg·kg-1 of Cu and 77.63-130.60 mg·kg-1 of Zn. The increases of metal contents met the levels set forth by the national GB26419-2010 and the Agricultural Industry Standard of NY929-2005. Furthermore, the harvested M. spicatum could be used for fodder to effectively avoid the concern of secondary pollution after the biogas slurry purification.
-
Key words:
- Myriophyllum spicatum /
- accumulation /
- biogas slurry /
- Cu /
- Zn
-
表 1 狐尾藻主要成分含量指标
Table 1. Chemical composition of M. spicatum
含水率/% 有机质/% 全氮/% 全磷/% 全钾/% Cu/(mg·kg-1) Zn/(mg·kg-1) 90 69.23 3.95 0.82 1.53 3.12 66.42 表 2 供试沼液的特性
Table 2. Characteristics of biogas slurry used for experiment
沼液水质指标 COD/(mg·L-1) DO/(mg·L-1) NH4+-N/(mg·L-1) TP/(mg·L-1) Cu/(mg·kg-1) Zn/(mg·kg-1) pH 含量 4165 3.15 983.75 18.98 52.44 250.08 7.42 -
[1] 叶美锋, 吴飞龙, 林代炎, 等.规模化养猪场粪污重金属动态流向分析研究[J].能源与环境, 2010(4):15-16. doi: 10.3969/j.issn.1672-9064.2010.04.006 [2] 黄玉溢, 刘斌, 陈桂芬, 等.规模化养殖场猪配介饲料和粪便中重金属含量研究[J].广西农业科学, 2007, 38(5):544-546. doi: 10.3969/j.issn.2095-1191.2007.05.016 [3] 田允波, 曾书琴.高铜改善猪生产性能和促生长机理的研究进展[J].黑龙江畜牧兽医, 2000(11):36-37. doi: 10.3969/j.issn.1004-7034.2000.11.026 [4] 姚丽贤, 李国良, 党志.集约化养殖畜禽禽粪中主要化学物质调查[J].应用生态学报, 2006, 17(10):1989-1992. doi: 10.3321/j.issn:1001-9332.2006.10.041 [5] CANG L, WANG Y J, ZHOU D M, et al. Study of heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu province[J]. Environ Sci, 2004, 16(3):371-374. [6] 段然, 王刚, 杨世琦, 等.沼肥对农田上壤的潜在污染分析[J].吉林农业大学学报, 2008, 30(3):310-315. [7] YAN C Z, WANG S R, ZENG A Y, et al.Equilibrium and kinetics of copper (Ⅱ)biosorption by Myriophyllum spicatum L.[J].Journal of Environmental Sciences, 2005, 17(6):1025-1029. [8] 王建龙, 陈灿.生物吸附法去除重金属离子的研究进展[J].环境科学学报, 2010, 3(4):673-701. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201004001 [9] 宋玉芝, 孔繁, 王敏, 等.光照强度及附植藻类对狐尾藻生理指标的影响[J].农业环境科学学报, 2015, 34(2):233-239. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201502005 [10] 乔旭, 王沛芳, 郑莎莎, 等.水生植物去除重金属机制及生理响应研究综述[J].长江科学院院报, 2015, 32(5):15-18. http://d.old.wanfangdata.com.cn/Periodical/cjkxyyb201505004 [11] 蒋雪, 温超, 曹珊珊, 等.重金属污染水体植物修复研究进展[J].应用化工, 2016, 45(10):1982-1990. http://d.old.wanfangdata.com.cn/Periodical/sxhg201610042 [12] 黄永杰, 刘登义, 王友保, 等.八种水生植物对重金属富集能力的比较研究[J].生态学杂志, 2006, 25(5):541-545. doi: 10.3321/j.issn:1000-4890.2006.05.015 [13] 潘义宏, 王宏镔, 谷兆萍, 等.大型水生植物对重金属的富集与转移[J].生态学报, 2010, 30(23):6430-6441. http://d.old.wanfangdata.com.cn/Periodical/stxb201023014 [14] 颜昌宙, 曾阿妍.沉水植物对重金属Cu2+的生物吸附及其生理反应[J].农业环境科学学报, 2009, 28(2):366-370. doi: 10.3321/j.issn:1672-2043.2009.02.026 [15] 黄亮, 李伟, 吴莹, 等.长江中游若干湖泊中水生植物体内重金属分布[J].环境科学研究, 2002, 15(6):1-4. doi: 10.3321/j.issn:1001-6929.2002.06.001 [16] 张守文, 呼世斌, 肖璇, 等.油菜对Pb污染土壤的修复效应研究[J].西北植物学报, 2009, 29(1):122-127. doi: 10.3321/j.issn:1000-4025.2009.01.019 [17] JUNICHI F, AKIHIRO M, YASUNARI M.Vision for utilization of live stock residue as bio-energy resource in Japan[J].Biomass and Bio-energy, 2005, 29:367-374. doi: 10.1016/j.biombioe.2004.06.017 [18] FIELD C, MOONEY H A. The photosynthesis-nitrogen relationship in wild plants//Givnish Ted. On the Economy of Plan t Form an d Function[M].Cambridge: Cambridge University Press, 1986: 22-55. [19] 刘燕, 王圣瑞, 金向灿, 等.水体营养水平对3种沉水植物生长及抗氧化酶活性的影响[J].生态环境学报, 2009, 18(1):57-63. doi: 10.3969/j.issn.1674-5906.2009.01.011 [20] 潘瑞积, 董愚得.植物生理学[M].第3版.北京:高等教育出版社, 1997. [21] TOMSETT A B, THURMAN D A.Molecular biology of metal tolerances of plants[J].Plant, Cell & Environ, 1998, (11):383-394. doi: 10.1111-j.1365-3040.1988.tb01362.x/ [22] 江行玉, 赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报, 2001, 7(1):92-99. doi: 10.3321/j.issn:1006-687X.2001.01.022 [23] 李巧云, 曾清如, 廖柏寒, 等.沉水植物对沉积物中铜锌铅的富集[J].水土保持学报, 2012, 26(5):177-181. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201205036 [24] 李恒.云南横断山脉山区湖泊水生植被[J].云南植物学研究, 1987, 9(3):257-270. [25] 任南, 严国安, 马剑敏, 等.环境因子对东湖几种沉水植物生理的影响研究[J].武汉大学学报(自然科学版), 1996, 42(2):213-218. doi: 10.3321/j.issn:1671-8836.1996.02.003 [26] 栾会妮, 黄福祥, 姚维志.环境因子对穗状狐尾藻光合作用的影响[J].重庆水产, 2005(2):31-37. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200502794327 [27] 李国新, 薛培英, 李庆召, 等. pH对穗花狐尾藻吸附重金属镉的影响[J].环境科学研究, 2009, 11(22):1329-1333. http://d.old.wanfangdata.com.cn/Periodical/hjkxyj200911016 [28] 黄宏霞.钝顶螺旋藻对Cu2+和Cd2+吸附特性的研究[D].武汉: 华中农业大学, 2006: 9-10. [29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.饲料中铜的允许量: GB26419-2010[S].北京: 中国标准出版社, 2011: 1-2. [30] 中华人民共和国农业部.饲料中锌的允许量: NY929-2005[S].北京: 中国标准出版社, 2005: 1-2.