Distribution Characteristics of Soil Physical and Chemical Properties Under Different Vegetations in Red Soil Erosion Area
-
摘要: 为研究侵蚀红壤区生态系统恢复过程中土壤理化性质分布特征,通过选取红壤侵蚀区罗汉松、玉兰、红枫、茶花、梅花、竹柏6种植被下土壤为研究对象,分析其土壤理化性质。结果表明:(1)土壤容重与最大持水量、毛管持水量、最小田间持水量、非毛管孔隙、总孔隙均达到显著或极显著水平的负相关关系。茶花土壤容重最大,土壤孔隙、持水能力较差,梅花、竹柏土壤容重较小,土壤孔隙、持水能力较好;(2)土壤pH介于4.60~5.20,呈酸性。竹柏土壤pH最小,酸性最强,梅花0~20 cm土层土壤pH最大,酸性较弱;(3)植被对土壤养分具有表聚作用。土壤有机质含量为2.27~20.02 g·kg-1。全氮与有机质含量呈极显著正相关,玉兰土壤磷素含量较高,速效钾主要集中在表层土壤;(4)土壤综合肥力指标值分析结果表明,玉兰植被下土壤质量最高,恢复效果最好。不同植被下土壤理化性质表现出明显的差异性,玉兰是改良土壤结构、提升土壤肥力的优势植被品种。Abstract: The soil collected from 6 types of vegetation inclued Podocarpus macrophyllus, Yulania denudate, Acer palmatum 'Atropurpureum', Camellia japonica, Armeniaca mume, Nageia nagi were studied and their soil physical and chemical properties were analyzed, in order to study the distribution characteristics of soil physical and chemical properties during the restoration process of ecosystem in eroded red soil region. The results showed that (1) Soil bulk density had a significant or extremely significant level of negative correlation with maximum water holding capacity, capillary water holding capacity, minimum field water holding capacity, non-capillary pores and total pores. Camellia japonica had the largest bulk density, poor soil porosity and water holding capacity, and the soil bulk density of Armeniaca mume and Nageia nagi cypress was small, and the soil pore and water holding capacity were better. (2) The soil pH ranged from 4.60 to 5.20, which was acidic. Nageia nagi soil had the lowest pH and the strongest acidity. The 0-20 cm soil layer of Armeniaca mume had the highest pH and the weak acidity. (3) The vegetation had an effect on the accumulation of soil nutrients. The soil organic matter content decreased with the increase of soil depth, and the range was 2.27-20.02 g·kg-1. There was a significant positive correlation between total nitrogen and organic matter content. Yulania denudata soil showed higher phosphorus content, and available potassium was mainly concentrated in surface soil. (4) Analysis of soil comprehensive fertility index values showed that the soil quality collected from Yulania denudata was the highest, and the recovery effect was also the best. The physical and chemical properties of soil collected from 6 types of vegetation showed obvious differences. Yulania denudata was the dominant vegetation variety to improve soil structure and enhance soil fertility.
-
Key words:
- red soil /
- soil erosion /
- vegetation /
- soil physical and chemical properties
-
表 1 植被基本信息
Table 1. The basic information of different vegetation
植被类型 学名 经度E 纬度N 海拔/m 生长特性 罗汉松 Podocarpus macrophyllus 116°48′0.70″ 25°50′21.50″ 347 常绿针叶乔木;灰色或灰褐色,浅纵裂,成薄片状脱落;枝开展或斜展,较密;叶螺旋状着生,条状披针形,微弯;雄球花穗状、腋生;雌球花单生叶腋;种子卵圆形。 玉兰 Yulania denudata 116°48′8.70″ 25°50′21.23″ 348 落叶乔木;枝广展形成宽阔树冠;树皮深灰色,粗糙开裂;小枝稍粗壮,灰褐色;叶纸质,倒卵形、宽倒卵形;花蕾卵圆形;聚合果圆柱形。 红枫 Acer palmatum 'Atropurpureum' 116°48′7.77″ 25°50′28.56″ 386 落叶小乔木;枝条多细长光滑,偏紫红色;叶掌状;裂片卵状披针形,先端尾状尖,缘有重锯齿;花顶生伞房花序,紫色;翅果,翅长2~3 cm,两翅间成钝角。 茶花 Camellia japonica 116°48′8.19″ 25°50′29.98″ 347 灌木或小乔木;嫩枝无毛;叶革质,椭圆形;花顶生,红色,无柄;蒴果圆球形。 梅花 Armeniaca mume 116°47′53.56″ 25°50′30.61″ 370 落叶乔木;树皮浅灰色或带绿色,平滑;小枝绿色,光滑无毛;叶片卵形或椭圆形;花单生或有时2朵同生于1芽内;花梗短,长约1~3 mm,常无毛;果实近球形。 竹柏 Nageia nagi 116°48′6.11″ 25°50′33.18″ 348 乔木;树皮近于平滑,红褐色或暗紫红色,成小块薄片脱落;枝条开展或伸展,树冠广圆锥形;叶对生,革质,长卵形、卵状披针形或披针状椭圆形;雄球花穗状圆柱形,单生叶腋;雌球花单生叶腋;种子圆球形。 表 2 不同植被下的土壤物理性质
Table 2. Soil physical properties under different vegetation
土层深度
/cm植被类型 容重
/(g·cm-3)最大持水量
/(g·kg-1)毛管持水量
/(g·kg-1)最小田间持水量
/(g·kg-1)非毛管孔隙
/%毛管孔隙
/%总孔隙度
/%0~20 罗汉松 0.81±0.09d 441.41±2.25c 320.74±4.51c 287.04±4.30c 12.04±1.03cd 32.43±3.61b 45.24±1.08c 玉兰 1.01±0.13c 538.21±2.53b 424.62±4.79a 386.48±3.50b 11.25±0.98d 42.73±5.20a 54.49±0.72b 红枫 0.82±0.09cd 387.26±4.60c 273.32±1.61cd 244.15±1.62d 14.30±1.67c 33.35±2.54b 47.83±0.25c 茶花 1.33±0.14a 328.39±3.38cd 217.76±1.62e 201.14±1.61de 15.04±1.62c 28.98±2.67c 44.51±0.69c 梅花 0.78±0.04d 449.21±2.54c 260.87±3.90d 234.16±2.61d 22.01±2.06b 30.78±2.91bc 52.90±0.15b 竹柏 0.87±0.04c 526.80±5.94b 416.53±5.80ab 388.84±1.64b 11.36±2.10d 44.61±6.70a 56.49±0.73b 20~40 罗汉松 0.95±0.10c 532.86±4.44b 307.78±3.65c 289.07±1.32c 21.02±1.96b 29.15±2.64bc 51.09±1.29bc 玉兰 1.21±0.06b 387.94±2.92c 269.75±3.15d 249.01±1.40cd 14.05±1.50c 32.64±5.60b 46.85±0.22c 红枫 1.08±0.12b 473.39±4.79bc 262.82±2.40d 233.23±3.15d 23.07±2.31b 28.34±3.25c 51.71±0.42bc 茶花 1.42±0.12a 270.25±1.77d 206.31±4.60e 186.00±0.01e 9.24±0.96d 29.24±4.60bc 39.24±1.07d 梅花 0.81±0.09d 719.80±7.36a 368.50±3.38b 337.85±3.05c 27.95±2.61a 29.76±2.14bc 57.86±0.21b 竹柏 0.95±0.13c 677.62±3.37a 452.06±4.80a 426.96±4.30a 21.09±1.60b 42.72±4.40a 63.91±0.13a 注:n=3;不同小写字母表示不同植被不同土层间差异显著(P<0.05)。表 3同。 表 3 不同植被下的土壤化学性质
Table 3. Soil chemical properties under different vegetation
土层深度
/cm植被类型 pH 有机质
/(g·kg-1)全氮
/(g·kg-1)全磷
/(g·kg-1)全钾
/(g·kg-1)碱解氮
/(mg·kg-1)速效磷
/(mg·kg-1)速效钾
/(mg·kg-1)0~20 罗汉松 4.66±0.04cd 8.09±0.01cd 0.41±0.02c 0.45±0.03b 5.79±0.33cd 62.16±1.23a 13.53±2.01d 152.36±3.3b 玉兰 4.99±0.04b 20.02±0.54a 1.08±0.04a 0.69±0.01a 8.60±0.50ab 41.90±0.64c 21.43±0.27c 203.43±2.30a 红枫 4.92±0.01b 6.70±0.02d 0.41±0.03c 0.37±0.05b 7.37±0.25bc 28.53±1.24d 9.14±1.77e 55.15±2.56e 茶花 4.78±0.04c 8.56±0.05cd 0.48±0.03c 0.16±0.03d 8.19±0.25b 25.20±0.99d 14.47±1.75d 140.45±7.83b 梅花 5.22±0.04a 21.37±0.86a 0.72±0.03b 0.22±0.05cd 8.08±1.24b 60.55±2.97a 31.10±1.17b 26.62±8.58f 竹柏 4.60±0.03d 9.47±0.29c 0.47±0.04c 0.21±0.04cd 7.90±0.99b 53.69±2.18b 20.66±1.52c 14.51±2.82f 20~40 罗汉松 4.89±0.01bc 5.13±0.04e 0.23±0.01d 0.40±0.01b 5.60±0.23d 29.33±2.57d 5.11±1.09f 89.86±5.5de 玉兰 4.70±0.12cd 3.59±0.02e 0.27±0.01d 0.61±0.01a 8.31±0.08b 9.26±1.27f 70.01±0.44a 14.53±2.79f 红枫 4.95±0.04b 2.27±0.12e 0.20±0.01d 0.13±0.04d 6.32±0.08c 22.93±0.25d 6.04±0.07e 8.43±0.03g 茶花 4.84±0.06c 7.32±0.08d 0.41±0.01c 0.25±0.03c 7.96±0.08b 17.15±0.99e 24.67±0.35c 101.27±0.28c 梅花 4.79±0.01c 14.82±0.15b 0.49±0.01c 0.19±0.06cd 9.48±0.58a 56.04±1.04b 5.42±0.35ef 67.35±2.87e 竹柏 4.60±0.04d 6.11±0.08d 0.35±0.02cd 0.09±0.00e 6.49±0.01c 21.18±0.74d 4.22±0.06f 8.43±0.03g 表 4 组分的相关性(R)
Table 4. Correlation of each component (R)
pH 有机质 全氮 全磷 全钾 碱解氮 速效磷 速效钾 容重 最大持水量 毛管持水量 最小田间持水量 非毛管孔隙 毛管孔隙 总孔隙 pH 1 有机质 0.525 1 全氮 0.436 0.902** 1 全磷 0.098 0.165 0.371 1 全钾 0.147 0.568 0.537 0.085 1 碱解氮 0.158 0.670* 0.463 -0.030 0.119 1 速效磷 -0.060 -0.026 0.042 0.545 0.346 -0.259 1 速效钾 0.108 0.372 0.547 0.497 0.081 0.204 -0.123 1 容重 0.179 -0.176 -0.047 -0.018 0.153 -0.457 0.411 0.042 1 最大持水量 -0.189 0.239 0.102 -0.183 0.025 0.360 -0.432 -0.199 -0.931** 1 毛管持水量 -0.380 0.262 0.325 0.083 0.013 0.339 -0.250 -0.014 -0.751** 0.817** 1 最小田间持水量 -0.408 0.235 0.301 0.072 0.001 0.309 -0.247 -0.020 -0.742** 0.812** 0.998** 1 非毛管孔隙 0.249 0.080 -0.228 -0.480 -0.018 0.149 -0.405 -0.432 -0.578* 0.644* 0.108 0.102 1 毛管孔隙 -0.377 0.219 0.422 0.165 0.084 0.160 0.012 -0.021 -0.290 0.407 0.839** 0.843** -0.334 1 总孔隙 -0.117 0.261 0.174 -0.267 0.058 0.268 -0.336 -0.389 -0.749** 0.909** 0.827** 0.825** 0.565 0.589* 1 注:**表示在P < 0.01水平上显著相关;*表示在P < 0.05水平上显著相关。 -
[1] 陈志强, 陈志彪.南方红壤侵蚀区土壤肥力质量的突变——以福建省长汀县为例[J].生态学报, 2013, 33(10):3002-3010. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201310007 [2] 于泳, 林洪.我国红壤侵蚀研究进展[J].亚热带水土保持, 2009, 21(3):34-38. doi: 10.3969/j.issn.1002-2651.2009.03.009 [3] 谢凯, 罗旭辉, 翁伯琦, 等.南方红壤区水土流失治理与循环农业发展对策研究[J].福建农业学报, 2013, 28(11):1159-1163. doi: 10.3969/j.issn.1008-0384.2013.11.017 [4] 鄢新余, 陈志强, 陈志彪, 等.南方红壤侵蚀区植被恢复过程植物群落多样性[J].福建师范大学学报(自然科学版), 2015, 31(2):90-95, 120. http://cdmd.cnki.com.cn/Article/CDMD-10389-2009170632.htm [5] 姬少玲, 黄夏.自然恢复和人工重建对退化森林生态系统的影响[J].辽宁林业科技, 2017(4):32-34. doi: 10.3969/j.issn.1001-1714.2017.04.012 [6] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业出版社, 2000. [7] 张庆费, 宋永昌.浙江天童植物群落次生演替与土壤肥力的关系[J].生态学报, 1999, 19(2):174-178. doi: 10.3321/j.issn:1000-0933.1999.02.006 [8] 邓欢, 张斌, 王会利, 等.侵蚀红壤区不同人工植被恢复下的土壤肥力比较[J].中国农业科技导报, 2007, 9(3):79-85. doi: 10.3969/j.issn.1008-0864.2007.03.015 [9] 刘飞渡, 韩蕾.亚热带红壤丘陵区不同人工林型对土壤理化性质、微生物类群和酶活性的影响[J].生态环境学报, 2015(9):1441-1446. http://d.old.wanfangdata.com.cn/Periodical/tryhj201509003 [10] BURTON A J, PREGITZER K S, HENDRICK R L.Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J].Oecologia, 2000, 125(3):389-399. doi: 10.1007/s004420000455 [11] 易小波, 邵明安, 赵春雷, 等.黄土高原南北样带不同土层土壤容重变异分析与模拟[J].农业机械学报, 2017, 48(4):198-205. http://d.old.wanfangdata.com.cn/Periodical/nyjxxb201704026 [12] 黄昌勇, 徐建明.土壤学[M].北京:中国农业出版社, 2010. [13] 单梦颖, 杨永刚, 吴兆录.云南省中部3种森林土壤含水率、容重和细根重及其垂直分布[J].云南地理环境研究, 2013, 25(4):38-44. http://d.old.wanfangdata.com.cn/Periodical/yndlhjyj201304007 [14] 康冰, 刘世荣, 蔡道雄, 等.南亚热带不同植被恢复模式下土壤理化性质[J].应用生态学报, 2010, 21(10):2479-2486. http://d.old.wanfangdata.com.cn/Periodical/yystxb201010005 [15] LEI Y, CHEN L D, WEI W, et al.Comparison of deep soil moisture in two re-vegetation watersheds in semi-arid regions[J].Journal of Hydrology, 2014, 513(1):314-321. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=48a37e697ff7e9955c920c0df1a41e1b [16] 杨秀敏, 任广萌, 李立新, 等.土壤pH值对重金属形态的影响及其相关性研究[J].中国矿业, 2017, 26(6):79-83. doi: 10.3969/j.issn.1004-4051.2017.06.015 [17] 丁卉, 李朋飞, 孙维红, 等.不同种植模式对茶花生长及土壤理化性质的影响[J].江苏农业科学, 2018, 46(12):106-110. http://d.old.wanfangdata.com.cn/Periodical/jsnykx201812025 [18] 路岑, 张维勇, 石磊, 等.梵净山不同植被类型下土壤养分的差异[J].贵州农业科学, 2016, 44(2):177-181. doi: 10.3969/j.issn.1001-3601.2016.02.045 [19] 王美丽, 李军, 朱兆洲, 等.土壤溶解性有机质的研究进展[J].矿物岩石地球化学通报, 2010, 23(3):304-310, 316. doi: 10.3969/j.issn.1007-2802.2010.03.015 [20] 马芬, 马红亮, 邱泓, 等.水分状况与不同形态氮添加对亚热带森林土壤氮素净转化速率及N2O排放的影响[J].应用生态学报, 2015, 26(2):379-387. http://d.old.wanfangdata.com.cn/Periodical/yystxb201502007 [21] 巩杰.黄土丘陵区小流域不同植被恢复类型的环境效应及生态适应性研究[D].北京: 中国科学院生态环境研究中心, 2005. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1632266 [22] 姜红梅, 李明治, 王亲, 等.祁连山东段不同植被下土壤养分状况研究[J].水土保持研究, 2011, 18(5):166-170. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201105035 [23] 朱秋莲, 邢肖毅, 张宏, 等.黄土丘陵沟壑区不同植被区土壤生态化学计量特征[J].生态学报, 2013, 33(15):4674-4682. http://d.old.wanfangdata.com.cn/Periodical/stxb201315018