Effects of Fertilization on Carbon Emission and Iron Content in Soil at Jasmine Flower Garden in Fuzhou
-
摘要: 为阐明施肥量对福州茉莉园碳排放及其与土壤铁含量的影响,以福州帝封江茉莉园为研究对象,设置对照、减半、正常和倍增4个处理,对不同施肥量下碳排放以及铁含量进行了测定与分析。结果表明:对照、减半、正常、倍增样地CO2排放通量平均值依次为(430.88±142.06)、(473.08±52.18)、(435.23±61.21)和(478.75±118.64)mg·m-2· h-1,CH4排放通量平均值依次为(38.84±9.69)、(16.77±10.71)、(4.11±4.79)和(11.92±2.27)μg·m-2·h-1。与对照相比,CO2排放通量在减半、正常和倍增施肥处理分别增加了9.7%、1.01%和11.10%,CH4排放通量在减半、正常和倍增施肥处理下则分别减少了56.82%、89.41%、69.30%。总Fe含量平均值依次为(9.11±0.08)、(7.87±0.09)、(9.37±0.25)和(8.90±0.21)g·kg-1,Fe2+含量的平均值依次为(1.08±0.01)、(1.08±0.07)、(1.01±0.09)和(1.09±0.04)g·kg-1,Fe3+含量平均值依次为(8.04±0.08)、(6.80±0.15)、(8.37±0.19)和(7.82±0.22)g·kg-1。总Fe含量在减半和倍增处理下分别减少了13.61%和2.30%,而正常处理提高了2.85%;Fe2+含量在正常处理下减少了6.48%;Fe3+含量在正常处理下提高了4.10%,在减半和倍增处理则分别减少了15.42%与2.73%。由相关性分析得出对照、正常、倍增处理C排放与Fe3+、Fe含量呈极显著负相关关系(P < 0.01),而减半处理呈显著负相关关系(P < 0.05)。Abstract: Effects of fertilizer application on the carbon emission and iron content in soil of a jasmine flower garden were investigated at Difengjiang Jasmine Garden in Fuzhou. Based on the application normally used by the trade, 4 levels of fertilization were implemented, i.e., control (C), normal (N), of N (H), and 2x of N (D). The results showed that the average hourly CO2 fluxes at various lots were(430.88±142.06) mg·m-2 for C, (473.08±52.18) mg·m-2 for H, (435.23±61.21) mg·m-2 for N, and (478.75±118.64) mg·m-2 for D. The average CH4 emission rateswere (38.84±9.69) μg·m-2·h-1 for C, (16.77±10.71) μg·m-2·h-1 for H, (4.11±4.79) μg·m-2·h-1 for N, and(11.92±2.27) μg·m-2·h-1 for D. Thus, the CO2 flux increased by 9.7% for H, 1.01% for N, and 11.10% for D over control, while the CH4 flux reduced by 56.82% for H, 89.41% for N, and 69.30% for D over control. The average total Fe contents were(9.11±0.08) g·kg-1 for C, (7.87±0.09) g·kg-1 for H, (9.37±0.25) g·kg-1 for N, and (8.90±0.21) g·kg-1 for D; theaveraged Fe2+ content, (1.08±0.01) g·kg-1 for C, (1.08±0.07) g·kg-1 for H, (1.01±0.09) g·kg-1 for N, and(1.09±0.04) g·kg-1 for D; and, while the average Fe3+ content, (8.04±0.08) g·kg-1 for C, (6.80±0.15) g·kg-1 for H, (8.37±0.19) g·kg-1 for N, and(7.82±0.22) g·kg-1 for D. The total Fe contents decreased by 13.61% for H and 2.30% for D, while increased by 2.85% for N over control. The Fe2+ content decreased by 6.48% for N; and, Fe3+ contents increased by 4.10% for N, and decreased by 15.42% for H and 2.73% for D over control. A correlation analysis indicated that the carbon emission fromthe lots treated with C, N, and D significantly inversely correlated with the Fe3+ and total Fe contentsat(P < 0.01), whereas H, at P < 0.05.
-
Key words:
- fertilization /
- carbon emission /
- iron dynamics /
- jasmine flower garden
-
表 1 茉莉花园CO2、CH4排放通量重复测量方差分析
Table 1. Analysis of variance of CO2 and CH4 emission fluxes at jasmine garden
指标 变量 df MS F P 处理 3 13362915.04 15.426 <0.01 CO2 时间 10 61461.247 0.061 0.979 处理×时间 30 2414386.151 0.929 0.577 处理 3 21969.063 3.749 0.06 CH4 时间 10 78609.01 6.272 <0.01 处理×时间 30 291590.569 7.755 <0.01 表 2 不同施肥处理的碳排放与土壤铁形态的相关性
Table 2. Correlation between carbon emission from different fertilization treatments and forms of iron in soil
铁形态 对照 减半 正常 倍增 综合 CO2 Fe -0.536** -0.413* -0.737** -0.502** -0.507** Fe2+ 0.097 0.211 -0.174 -0.269 -0.047 Fe3+ -0.531** -0.427* -0.743** -0.494** -0.511** CH4 Fe -0.127 -0.223 -0.141 0.034 -0.15 Fe2+ 0.162 0.276 -0.284 0.011 -0.035 Fe3+ -0.138 -0.248 -0.107 -0.034 -0.148 C排放 Fe -0.536** -0.413* -0.737** -0.502** -0.507** Fe2+ 0.097 0.211 -0.174 -0.269 -0.047 Fe3+ -0.531** -0.427* -0.743** -0.494** -0.511** 注:*表示在0.05水平(双侧)上显著相关;注:**表示在0.01水平(双侧)上显著相关。表 3同。 表 3 不同施肥处理的碳排放与土壤铁形态以及环境因素的相关性
Table 3. Correlation between carbon emission from different fertilization treatments and forms of iron or environmental factors
处理 环境因子 CO2 CH4 C排放 Fe Fe2+ Fe3+ 对照 土温 0.617** 0.110 0.617** -0.668** -0.032 -0.649** 电导率 0.364* -0.156 0.364* -0.427* -0.044 -0.413* 含水率 -0.414* -0.087 -0.414* -0.054 0.427 0.015 pH 0.116 0.26 0.116 0.034 0.442** -0.006 减半 土温 0.621** 0.273 0.621** -0.777** -0.002 -0.761** 电导率 0.202 0.191 0.202 -0.267 0.117 -0.274 含水率 0.133 0.188 0.133 0.122 0.334 0.084 pH 0.495** 0.486** 0.495** -0.179 0.352 -0.213 正常 土温 0.778** 0.283 0.778** -0.823** -0.099 -0.842** 电导率 0.186 -0.012 0.186 -0.390* -0.054 -0.398* 含水率 -0.540** -0.462** -0.540** 0.217 0.175 0.201 pH -0.292 0.133 -0.292 0.418* -0.360* 0.483** 倍增 土温 0.671** 0.387* 0.671** -0.651** -0.145 -0.682** 电导率 0.425* 0.119 0.425* -0.495* -0.129 -0.154** 含水率 -0.215 -0.397* -0.215 -0.099 0.216 -0.151 pH -0.229 -0.19 -0.229 0.172 0.005 0.117 综合 土温 0.644** 0.133 0.644** -0.720** -0.081 -0.724** 电导率 0.257** 0.184* 0.257** -0.372* -0.039 -0.374** 含水率 -0.174* -0.07 -0.174* 0.054 0.231** 0.240 pH 0.151 -0.003 0.151 0.025 0.092 0.013 -
[1] LEO P R K M. IPCC 2014, Climate Change 2014:Synthesis Report. Contribution of Working Groups Ⅰ, Ⅱ and Ⅲ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Journal of Romance Studies, 2015, 4(2):85-88. [2] SOLOMON S. IPCC (2007): Climate Change The Physical Science Basis[C]//AGU Fall Meeting. AGU Fall Meeting Abstracts, 2007, 123-124. [3] 秦大河. IPCC第五次评估报告第一工作组报告的亮点结论[J].气候变化研究进展, 2014, 10(1):1-6. doi: 10.3969/j.issn.1673-1719.2014.01.001 [4] PRASAD J, RAO C S, SRINIVAS K, et al.Effect of ten years of reduced tillage and recycling of organic matter on crop yields, soil organic carbon and its fractions in Alfisols of semi arid tropics of southern India[J]. Soil and Tillage Research, 2016, 156:131-139. doi: 10.1016/j.still.2015.10.013 [5] 魏书精, 罗碧珍, 孙龙, 等.森林生态系统土壤呼吸时空异质性及影响因子研究进展[J].生态环境学报, 2013, (4):689-704. doi: 10.3969/j.issn.1674-5906.2013.04.024 [6] 殷文, 史倩倩, 郭瑶, 等.秸秆还田、一膜两年用及间作对农田碳排放的短期效应[J].中国生态农业学报, 2016, 24(6):716-724. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201606003 [7] 李学恒.土壤化学[M].北京:高等教育出版社, 2001. [8] 赵转军, 杨艳艳, 庞瑜, 等.铁碳共沉作用对土壤重金属的吸附性能研究进展[J].地球科学进展, 2017, 32(8):867-874. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz201708010 [9] 任洪昌, 林贤彪, 王纯, 等.地方认同视角下居民对农业文化遗产认知及保护态度——以福州茉莉花与茶文化系统为例[J].生态学报, 2015, 35(20):6806-6813. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stxb201520026 [10] 张永勋, 闵庆文, 王维奇, 等.农户社会经济特征对农业种植意愿的影响——基于农业文化遗产保护目的的福州茉莉种植户研究[J].中国生态农业学报, 2016, 24(12):1714-1721. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201612014 [11] 汪旭明, 曾冬萍, 闵庆文, 等.福州茉莉花种植园土壤化学计量比及其对碳释放潜力的影响[J].中国水土保持科学, 2015, 13(1):118-126. doi: 10.3969/j.issn.1672-3007.2015.01.019 [12] WANG W, MIN Q, SARDANS J, et al.Organic cultivation of Jasmine and tea increases carbon sequestration by changing plant and soil stoichiometry[J]. Agronomy Journal, 2016, 108(4):1636-1648. doi: 10.2134/agronj2015.0559 [13] 刘小慧, 严锦华, 杨文文, 等.秸秆及配施工农业废弃物对茉莉种植园碳排放的影响[J].环境科学学报, 2017, 37(4):1555-1563. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201704042 [14] 王妙莹, 许旭萍, 王维奇, 等.炉渣与生物炭施加对稻田温室气体排放及其相关微生物影响[J].环境科学学报, 2017, 37(3):1046-1056. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201703029 [15] 鲁如坤.土壤化学农业分析方法[M].北京:中国农业科技出版社. 2000. [16] LIU Y, YANG M, WU Y, et al. Reducing CH4 and CO2 emissions from waterlogged paddy soil with biochar[J]. Journal of Soils & Sediments, 2011, 11(6):930-939. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9f1cb208f961b2789a3c5e31ad9ad89e [17] KODAMA N, FERRIO J P, BRVGGEMANN N, et al. Short-term dynamics of the carbon isotope composition of CO2 emitted from a wheat agroecosystem-physiological and environmental controls[J]. Plant Biology 2011, 13(1):115-125. doi: 10.1111/plb.2010.13.issue-1 [18] 李睿达, 张凯, 苏丹, 等.施氮对桉树人工林生长季土壤温室气体通量的影响[J].生态学报, 2015, 35(18):5931-5939. http://d.old.wanfangdata.com.cn/Periodical/stxb201518003 [19] 丁瑞霞, 王维钰, 张青.两种轮作模式下秸秆还田对土壤呼吸及其温度敏感性的影响[J].中国生态农业学报, 2017, 25(8):1106-1118. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201708002 [20] 杨萌, 李永夫, 肖永恒, 等.生物质炭输入对土壤有机碳库和CO2排放的影响研究进展[J].湖北农业科学, 2017, 56(2):205-210. http://d.old.wanfangdata.com.cn/Periodical/hbnykx201702003 [21] 贺美, 王立刚, 朱平, 等.长期定位施肥下黑土碳排放特征及其碳库组分与酶活性变化[J].生态学报, 2017, 37(19):6379-6389. http://d.old.wanfangdata.com.cn/Periodical/stxb201719009 [22] 田善义, 王明伟, 成艳红, 等.化肥和有机肥长期施用对红壤酶活性的影响[J].生态学报, 2017, 37(15):4963-4972. http://d.old.wanfangdata.com.cn/Periodical/stxb201715005 [23] 周瑾, 王昌全, 陈文宽, 等.氮磷钾平衡施肥对茉莉花生长和产量的影响[J].四川农业大学学报, 2003, 21(2):147-151. doi: 10.3969/j.issn.1000-2650.2003.02.020 [24] SIVAN O, SHUSTA S S, VALENTINE D L, et al. Methanogens rapidly transition from methane production to iron reduction[J]. Geobiology, 2016, 14(2):190-203. doi: 10.1111/gbi.2016.14.issue-2 [25] SHAO R, XU M, LI R, et al. Land use legacies and nitrogen fertilization affect methane emissions in the early years of rice field development[J]. Nutrient Cycling in Agroecosystems, 2017(10):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=408ebf054d5b02970abd8cf6ac7be5f8 [26] LINDAU C W, BOLLICH P K, DELAUNE R D, et al. Effect of urea fertilizer and environmental factors on CH4, emissions from a Louisiana, USA rice field[J]. Plant & Soil, 1991, 136(2):195-203. doi: 10.1007/BF02150050 [27] DAS S, ADHYA T K, et al. Effect of combine application of organic manure and inorganic fertilizer on methane and nitrous oxide emissions from a tropical flooded soil planted to rice[J]. Geoderma, 2014, 213(1):185-192. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=36896269cd842445bc201736f572f449 [28] 程伟丽.茶树铁的分布特征及稻改茶对土壤铁碳耦合关系的影响[D].雅安: 四川农业大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10626-1013157388.htm [29] 吴超, 曲东, 刘浩.初始pH值对碱性和酸性水稻土微生物铁还原过程的影响[J].生态学报, 2014, 34(4):933-942. http://d.old.wanfangdata.com.cn/Periodical/stxb201404019 [30] 王图锦, 吉芳英, 何强, 等.三峡库区土壤铁异化还原及其对铁形态影响[J].重庆大学学报, 2011, 34(1):100-104. http://d.old.wanfangdata.com.cn/Periodical/cqdxxb201101017 [31] HERNDON E, ALBASHAIREH A, SINGER D, et al. Influence of iron redox cycling on organo-mineral associations in Arctic tundra soil[J]. Geochimica Et Cosmochimica Acta, 2017, 207:210-231. doi: 10.1016/j.gca.2017.02.034 [32] 马智慧, 王亚娥, 李杰.铁氧化菌特性及其在环境污染治理中的应用[J].环境科学与管理, 2011, 36(11):67-71. doi: 10.3969/j.issn.1673-1212.2011.11.015 [33] 陈娅婷, 李芳柏, 李晓敏.水稻土嗜中性微好氧亚铁氧化菌多样性及微生物成矿研究[J].生态环境学报, 2016, 25(4):547-554. http://d.old.wanfangdata.com.cn/Periodical/tryhj201604001 [34] 王磊, 应蓉蓉, 石佳奇, 等.土壤矿物对有机质的吸附与固定机制研究进展[J].土壤学报, 2017, 54(4):805-818. http://d.old.wanfangdata.com.cn/Periodical/trxb201704001 [35] 周萍, 宋国菡, 潘根兴, 等.三种南方典型水稻土长期试验下有机碳积累机制研究Ⅱ.团聚体内有机碳的化学结合机制[J].土壤学报, 2009, 46(2):263-273. http://d.old.wanfangdata.com.cn/Periodical/trxb200902011 [36] 郭杏妹, 吴宏海, 罗媚, 等.红壤酸化过程中铁铝氧化物矿物形态变化及其环境意义[J].岩石矿物学杂志, 2007, 26(6):515-521. doi: 10.3969/j.issn.1000-6524.2007.06.008 [37] 衡利沙, 王代长, 蒋新, 等.黄棕壤铁铝氧化物与土壤稳定性有机碳和氮的关系[J].环境科学, 2010, 31(11):2748-2755. http://d.old.wanfangdata.com.cn/Periodical/hjkx201011031 [38] 童辉, 刘承帅, 陈曼佳, 等.水稻土亚铁氧化耦合砷固定的微氧型铁氧化菌作用机制[C]//中国矿物岩石地球化学学会学术年会, 2017.