Effect of Extremely Thermophilic Bacteria on Amino Acid Degradation of High-temperature Treated Dead Pigs
-
摘要: 为探明复合极端嗜热菌对高温病死猪处理中氨基酸降解效果,采集发酵处理前样品(Q组)及无菌处理组样品Wj组(无添加菌处理后再堆肥发酵60 d)为对照,设置4个不同添加量的嗜热菌混合菌样品处理(0.05%、0.08%、0.10%、0.12%),分析样品的氨基酸种类和含量变化情况,运用Illumina MiSeq对样品微生物群落进行测序,将所得的16S基因测序数据与代谢功能已知的微生物参考基因组数据库相对比,预测细菌代谢功能。结果表明添加0.08%~0.12%复合嗜热菌组处理可明显促进高温处理中病死猪的氨基酸降解,显著降低病死猪样品的氨基酸总量和各氨基酸组分含量;和0.05%添加量处理组相比,氨基酸总量下降了7.04%~8.49%(P < 0.05),天冬氨酸、苏氨酸、甘氨酸、丙氨酸、亮氨酸、苯丙氨酸、赖氨酸等7种氨基酸的量显著降低;谷氨酸、缬氨酸、异亮氨酸、酪氨酸、精氨酸等5种氨基酸的降解效果与堆肥60 d处理Wj组没有显著差异。处理前和处理后病死猪菌群氨基酸代谢功能差异明显,添加嗜热菌混合菌组与无菌处理后堆肥Wj组的菌群氨基酸代谢功能接近,两者差异不明显。说明添加0.08%~0.12%复合极端嗜热菌促进了高温病死猪处理过程中氨基酸的代谢和降解,与长时间堆肥发酵处理的病死猪降解效果相似。Abstract: Effect of addition of mixed extremely thermophilic bacteria on the degradation of amino acids in the high-temperature-treated pig carcass was studied.Samples applied in this study included materials of dead, diseased pigs prior to fermentation (Group Q) and after aseptic treatment (thermophile-free Group Wj that had been composted for 60 days) as controls, as well as those with additions of various ultra-thermophiles at 0.05%, 0.08%, 0.10% or 0.12%.Changes on the composition and content of amino acids of the samples after treatments were determined. The Illumina MiSeq method was used to analyze the microbial community on the samples. The 16S gene sequencing data obtained were compared to a reference genome database of known metabolic functions to predict those of the bacteria collected. The results showed that the addition of 0.08%-0.12% thermophiles significantly promoted the amino acid degradation that significantly reduced the total and individual amino acid contents. The reductions on total amino acid content were 7.04%-8.49% with an addition of the thermophiles more than 0.05% (P < 0.05)as the asparagine, threonine, glycine, alanine, leucine, phenylalanine, lysine contents decreased significantly. On the other hand, the degradations on glutamic acid, valine, isoleucine, tyrosine and arginine did not differ significantly in Group Wj. The amino acid metabolic functions of the dead pigs before and after treatment were significantly different. Those of Group Q and the treatment groups were significantly different indicating the addition of 0.08%-0.12% the extremely thermophilic bacteria enhanced the metabolism and amino acid degradation in the high-temperature-treated pig carcass, and that the effect was similar to a 60 day compost fermentation.
-
Key words:
- composite extreme thermophilic bacteria /
- dead pig /
- amino acid /
- 16S sequencing /
- degradation
-
图 4 各组微生物群代谢功能类群相对丰度
注:图中横坐标为KEGG第二等级功能类群,横坐标下各类代谢通路A~L分别表示。A:异物生物降解与代谢; B:核酸代谢;C:萜类和聚酮代谢;D:其他氨基酸代谢;E:辅酶因子及维生素代谢;F:脂肪代谢;G:多糖生物合成及代谢;H:酶家族;I:能量代谢;J:碳水化合物代谢;K:其他次代谢物合成;L:氨基酸代谢。纵坐标为各功能类群在各样本(组)内的相对丰度。横线代表中位值,上下触须分别代表上下四分位以外的1.5倍IQR范围,符号“-”表示超过范围的极端值。
Figure 4. Relative abundance of metabolic functional groups of microbial communities in each group
表 1 氨基酸含量(干物质基础,n=13,%)
Table 1. Amino acid composition (% ondry matter base, n=13)
项目 Q组 a组 b组 c组 d组 Wj组 天冬氨酸 2.53±0.11a 2.47±0.08a 2.27±0.10b 2.28±0.09b 2.24±0.12b 1.95±0.07c 苏氨酸 1.01±0.02a 0.97±0.04a 0.82±0.01b 0.80±0.05b 0.81±0.02b 0.75±0.03c 丝氨酸 0.94±0.06a 0.89±0.07a 0.85±0.02a 0.84±0.05a 0.87±0.03a 0.70±0.04b 谷氨酸 4.03±0.09a 3.96±0.11a 3.27±0.13b 3.21±0.08b 3.25±0.10b 3.23±0.08b 甘氨酸 1.87±0.05a 1.84±0.07a 1.71±0.01b 1.68±0.04b 1.72±0.03b 1.51±0.05c 丙氨酸 1.71±0.06a 1.67±0.03a 1.47±0.05b 1.48±0.01b 1.45±0.05b 1.32±0.02c 胱氨酸 0.16±0.01a 0.12±0.02b 0.13±0.01a 0.14±0.03a 0.11±0.04b 0.14±0.02a 缬氨酸 1.45±0.07a 1.44±0.05a 1.20±0.03b 1.18±0.07b 1.16±0.04b 1.16±0.09b 蛋氨酸 0.25±0.01a 0.19±0.04b 0.21±0.05b 0.20±0.04b 0.18±0.02b 0.24±0.06a 异亮氨酸 0.95±0.02a 0.91±0.05a 0.82±0.03b 0.81±0.06b 0.85±0.03b 0.80±0.05b 亮氨酸 1.92±0.03a 1.90±0.02a 1.67±0.02b 1.65±0.04b 1.70±0.03b 1.52±0.05c 酪氨酸 0.44±0.01a 0.38±0.02a 0.35±0.04b 0.36±0.02b 0.33±0.01b 0.35±0.04b 苯丙氨酸 1.18±0.06a 1.17±0.08a 1.05±0.04b 1.01±0.06b 1.06±0.08b 0.980.07c 组氨酸 0.71±0.02a 0.67±0.01a 0.70±0.05a 0.68±0.03a 0.73±0.03a 0.59±0.01b 赖氨酸 1.64±0.03a 1.59±0.05a 1.34±0.02b 1.31±0.09b 1.35±0.07b 1.19±0.03c 精氨酸 1.23±0.08a 1.19±0.06a 0.97±0.07b 0.93±0.09b 0.99±0.08b 0.90±0.05b 脯氨酸 1.61±0.11a 1.58±0.09a 1.64±0.07a 1.60±0.08a 1.68±0.09a 1.08±0.07b 总量 23.60±0.21a 22.03±0.37b 20.48±0.51b 20.16±0.13b 20.46±0.46b 18.41±0.25c 注:同行数据后不同小写字母表示差异显著(P<0.05)。 -
[1] 高计会, 王明磊.病死畜禽处理体系建设现状及经验探讨[J], 中国畜禽种业, 2017(11):8-9. doi: 10.3969/j.issn.1673-4556.2017.11.004 [2] 朱秀君, 常见, 刘文科, 等.台湾地区病死动物无害化处理及再利用[J].北方牧业, 2014(13):16. http://d.old.wanfangdata.com.cn/Periodical/bfmy201413014 [3] MURPHY D W, HANDWERKER T S. Preliminare investigations of composting as a method of dead bird disposal[C]//In: Proceeding of the 1988 National Poulty waste Management Symposium, Coulumbus Ohio, 1988: 65-72. [4] FULHAGE C, ELLIS C E. Composting Dead Swine[EB/OL].http://wed.extension.illinois.edu/clmt/workbook/WK-FILES/COMPOST,PDF,1994. [5] GLANVILLE T D, TRAMPEL D W. Composting alternative for animalcarcass disposal[J].J Am Veter Med Assoc, 1997, 210(8):1116-1120. http://www.ncbi.nlm.nih.gov/pubmed/9108911 [6] ELWELL D, KEENER H, MOELLERS. Preferred disposal option:composting animal mortalities[J].Biocycle, 2001, 42(5):67-68. http://agris.fao.org/openagris/search.do?recordID=US201300087810 [7] Ahn H K, Glanville T D, Crawford B P, et al. Evaluation of the biodegradability of animal carcasses in passively aerated biosecure composting system[C]//In: Proceeding of ASABE Annual Intematonal Meeting, Minnesota Minneapolis, ASABE Annual International Meeting, 2007. [8] GLANVILLE T D, AHN H K, KOZIEL J A, et al. Pathongen inactivation poten tial and carcass degradation in a biosecure emergency livestock mortality composting system[C]//In: Proceedings of ASABE AnnualInternational Meeting, Rhode island Providence, ASABE Annual International Meeting, 2008. [9] MURRAY D, MEININGER R G, GOLOVAN S P, et al. Transgene and mitochondrial DNA are indicators of efficient composting of transgenic pig carcasses[J].Biores Technol, 2007, 98(9):1795-1804. doi: 10.1016/j.biortech.2006.06.029 [10] 郭东坡, 陶秀萍, 尚斌, 等.死猪堆肥处理的通风率选择探讨[J].农业工程学报, 2013, 29(5):187-193. http://d.old.wanfangdata.com.cn/Periodical/nygcxb201305027 [11] 缪伏荣, 董志岩, 陈鑫珠, 等, 一株热噬淀粉芽孢杆菌的分离和鉴定[J], 福建农业学报, 2018, 33(4):413-417. http://d.old.wanfangdata.com.cn/Periodical/fjnyxb201804015 [12] 于泓, 牟世芬.氨基酸分析方法的研究进展[J].分析化学, 2005, 33(3):398-404. doi: 10.3321/j.issn:0253-3820.2005.03.028 [13] ANDERSON M J, WILLIS T J. Canonical analysis of principal coordinates:a useful method of constrained ordination for ecology[J]. Ecology, 2003, 84:511-525. doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 [14] ASNICAR F, WEINGART G, TICKLE T L, et al. Compact graphical representation of phylogenetic data and metadata with Gra[J].Phl An, 2015, 3(11):e1029. http://mbe.oxfordjournals.org/external-ref?access_num=10.7717/peerj.1029&link_type=DOI [15] BLAXTER M, MANN J, CHAPMAN T, et al. Defining operational taxonomic units using DNA barcode data[J]. Philos Trans R Soc B-Biol Sci, 2005, 360:1935-1943. doi: 10.1098/rstb.2005.1725 [16] BOKULICH N A, SUBRAMANIAN S, FAITH J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nat Methods, 2013, 10:57-59. doi: 10.1038/nmeth.2276 [17] BREIMAN L. Random forests[J]. Mach Learn, 2001, 45:5-32. doi: 10.1023/A:1010933404324 [18] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QⅡME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7:335-336. doi: 10.1038/nmeth.f.303 [19] 张浩, 覃燕灵, 于俊勇, 等.发酵堆肥法无害化处理病死猪技术研究[J].今日养猪业, 2017(2):78-81. doi: 10.3969/j.issn.1673-8977.2017.02.021 [20] MARICOU H, VERSTRAETE W, MESUERE K. Hygienic aspects of biowaste composting[J]. Waste Management and Research, 1998, 16(4):304-311. doi: 10.1177/0734242X9801600402 [21] 李国学, 李玉春, 李彦富.固体废物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报, 2003, 22(2):252-256. doi: 10.3321/j.issn:1672-2043.2003.02.034 [22] CHAO A, SHEN T J. Nonparametric prediction in species sampling[J]. J Agric Biol Environ Stat, 2004, 9:253-269. doi: 10.1198/108571104X3262 [23] CHAO A, YANG M C K. Stopping rules and estimation for recapture debugging with unequal failure rates[J]. Biometrika, 1993, 80:193-201. doi: 10.1093/biomet/80.1.193 [24] CLARKE K R. Non-parametric multivariate analyses of changes in community structure[J]. Australian Journal of Ecology, 1993, 18:117-143. doi: 10.1111/aec.1993.18.issue-1 [25] COLE J R, WANG Q, CARDENAS E, et al. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Res, 2009, 37:141-145. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_2686447