Pb Tolerance and Accumulation of Pollutant-Remediation Plants
-
摘要: 为筛选Pb污染土壤修复植物,在文献调研的基础上,选择禾本科、豆科、菊科和茄科的12种植物作为研究对象,采用室内盆栽试验,进行不同质量浓度(0、500、1 000、1 500、2 000 mg·kg-1)的Pb胁迫处理。通过分析植物根长、株高、生物量、地上部和地下部Pb含量,比较不同植物对Pb的耐性及累积特性。结果表明:随着Pb处理浓度的增加,12种植物的生物量均呈现下降的趋势且植物Pb积累表现出明显的根系>茎叶的分异特性;通过耐Pb性综合评价,三叶草、黑麦草、早熟禾可作为铅锌矿区耐性栽培植物;在土壤Pb施加浓度为1 500 mg·kg-1时,富集系数大于1的共有6种,依次为:早熟禾(3.46)>三脉紫菀宽伞变种(3.34)>黑麦草(2.32)>狗牙根(1.78)>黑心菊(1.72)>辣椒276(1.26);转运系数大于1的共有3种,依次为:辣椒276(1.36)>黑心菊(1.30)>紫花苜蓿(1.23)。最后综合富集、转运系数及修复潜力指数,得出黑心菊在1 025 mg·kg-1时,其地上部铅积累量最高,为2.576 mg·株-1,具有很好的铅修复潜力,可作为铅超富集植物的先锋物种。Abstract: Based on a literature search, 12 species in the families of Gramineae, Leguminosae, Compositae and Solanaceae, that are phytoremediation plants capable of decontaminating Pb polluted soil, were studied for their Pb tolerance and accumulation capacities. The plants were subjected to Pb stress at varied concentrations (i.e., 0, 500, 1 000, 1 500 and 2 000 mg·kg-1) in an indoor pot experimentation. The root length, height, biomass, above-and under-ground Pb contents were determined to compare the Pb tolerance and accumulation of the plants. The results showed that, as the Pb concentration in soil increased, all plants decreased on biomass and increased Pb content in the order of roots, stems, and leaves. A comprehensive evaluation suggested that Campsis grandiflora, Lolium perenne and Poa pratensis had the potentials for use of remediating the soil pollution in lead and zinc mining areas. Among the tested, 6 plants showed a bioconcentration factor (BCF) greater than 1 at the Pb contamination level of 1 500 mg·kg-1:Poa annuaat 3.46, Aster ageratoides at 3.34, L. perenne at 2.32, Cynodon dactylon at 1.78, Rudbeckia hirta at 1.72, and Capsicum annuum 276 at 1.26. And, three varieties had a translocation factor (TF) greater than 1:C. annuum 276 at 1.36, R. hirta at 1.30, and Medicago sativa at 1.23. Taking BCF, TF and repair potential index together into consideration, R. hirta appeared to be the choice species for Pb remediation on polluted soil with a displayed capability of accumulating 2.576 mg Pb per plant in above-ground parts from a soil containing Pb 1 025 mg·kg-1.
-
Key words:
- lead /
- phytoremediation plants /
- tolerance /
- accumulation characteristics
-
表 1 12种植物的富集及转运系数
Table 1. Pb BCF and TF of 12 species
植物 狗牙根 黑麦草 早熟禾 三脉紫菀 黑心菊 硫华菊 血皮菜 辣椒276 三叶草 紫花苜蓿 三叶鬼针草 金盏菊 BCF 1.78 2.32 5.46 3.34 1.72 0.75 0.75 1.26 0.83 0.11 0.22 0.24 TF 0.15 0.12 0.11 0.27 1.30 0.14 0.48 1.36 0.39 1.23 0.39 0.42 表 2 不同植物的单项耐铅系数、隶属函数值及综合评价D值
Table 2. Individual Pb tolerance, subordination value and comprehensive evaluation D score of different species
植物 各指标耐Pb系数 隶属函数值 综合评价D值 耐铅性排序 株高 根长 地上生物量 地下生物量 地上部铅含量 地下部铅含量 μ(1) μ(2) μ(3) μ(4) μ(5) μ(6) 狗牙根 0.87 0.70 0.80 0.89 5.71 26.03 0.639 0.450 0.597 0.625 0.323 0.576 0.504 7 黑麦草 0.89 0.72 0.78 0.83 22.28 56.98 0.722 0.533 0.549 0.555 0.559 0.477 0.568 2 早熟禾 0.96 0.70 0.65 0.82 3.15 37.46 0.576 0.440 0.569 0.564 0.501 0.581 0.542 3 紫花苜蓿 0.85 0.70 0.76 0.97 3.26 3.21 0.574 0.560 0.442 0.582 0.411 0.486 0.486 8 三叶草 0.96 0.70 0.79 0.86 2.50 2.63 0.480 0.628 0.574 0.587 0.694 0.457 0.569 1 黑心菊 0.86 0.70 0.39 0.54 8.48 8.99 0.625 0.600 0.322 0.331 0.535 0.355 0.450 11 硫华菊 0.84 0.71 0.74 0.58 2.11 11.11 0.435 0.550 0.436 0.172 0.524 0.697 0.523 6 金盏菊 0.95 0.73 0.67 1.18 1.27 4.39 0.591 0.880 0.264 0.273 0.398 0.338 0.411 12 三叶鬼针草 1.00 0.73 0.95 0.87 1.12 4.53 0.516 0.671 0.527 0.619 0.410 0.573 0.528 5 血皮菜 0.94 0.72 0.77 0.60 1.56 2.16 0.400 0.500 0.502 0.459 0.487 0.476 0.474 9 三脉紫苑 0.84 0.64 0.70 0.75 12.95 12.00 0.533 0.500 0.612 0.610 0.527 0.492 0.531 4 辣椒276 1.26 0.68 0.76 0.74 4.17 4.05 0.698 0.417 0.576 0.521 0.300 0.474 0.454 10 权重 0.10 0.08 0.08 0.12 0.30 0.32 -
[1] LUO Q, WANG S, SUN L, et al. Identification of root exudates from the pb-accumulator sedum alfredii under Pb stresses and assessment of their roles[J]. Journal of Plant Interactions, 2017, 12(1):272-278. doi: 10.1080/17429145.2017.1339837 [2] VENKATACHALAM P, JAYALAKSHMI N, GEETHA N, et al. Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant acalypha indica l. under lead stress[J]. Chemosphere, 2017, 171:544-553. doi: 10.1016/j.chemosphere.2016.12.092 [3] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals-concepts and applications[J]. Chemosphere, 2013, 91(7):869-881. doi: 10.1016/j.chemosphere.2013.01.075 [4] 秦丽, 祖艳群, 李元, 等.会泽铅锌矿渣堆周边7种野生植物重金属含量及累积特征研究[J].农业环境科学学报, 2013, 32(8):1558-1563. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=NHBH201308012&dbname=CJFD&dbcode=CJFQ [5] 聂俊华, 刘秀梅, 王庆仁. Pb富集植物品种的筛选[J].农业工程学报, 2004, 20(4):255-258. doi: 10.3321/j.issn:1002-6819.2004.04.061 [6] SHARMA N C, GARDEA-TORRESDAY J L, PARSON J, et al. Chemical speciation of lead in Sesbania drummondii[J]. Environmental Toxicology and Chemistry, 2010, 23(9):2068-2073. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0210526230 [7] BECH J, DURAN P, ROCA N, et al. Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes[J]. Journal of Geochemical Exploration, 2012, 113(1):106-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0225498515 [8] WECKERLE C S, STAUB P O, SCHIESTL F P. Continuum Between Ritual and Medicinal Use of Plants:Smoke Analysis of Ritual Plants from Southwest China[J]. Chimia International Journal for Chemistry, 2011, 65(6):438-438. doi: 10.2533/chimia.2011.438 [9] ZU Y, YUAN L, SCHVARTZ C, et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping lead-zinc mine area, China[J]. Environment International, 2004, 30(4):567. doi: 10.1016/j.envint.2003.10.012 [10] CUI S, ZHANG T G, ZHAO S L, et al. Evaluation of three ornamental plants for phytoremediation of Pb-contamined soil[J]. International Journal of Phytoremediation, 2013, 15(4):299-306. doi: 10.1080/15226514.2012.694502 [11] 伍钧, 孟晓霞, 李昆.铅污染土壤的植物修复研究进展[J].土壤, 2005, 37(3):258-264. doi: 10.3321/j.issn:0253-9829.2005.03.006 [12] 高红真, 郭伟珍, 毕君. 20种植物对铅的耐性和富集特征研究[J].中国农学通报, 2014, 30(19):19-24. doi: 10.11924/j.issn.1000-6850.2014-0126 [13] 李慧芳, 王瑜, 袁庆华, 等.铅胁迫对禾本科牧草生长、生理及Pb2+富集转运的影响[J].草业学报, 2015, 24(9):163-172. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201509019 [14] 李源, 刘贵波, 高洪文, 等.紫花苜蓿种质苗期抗旱性综合评价研究[J].草地学报, 2009, 17(6):807-812. http://d.old.wanfangdata.com.cn/Periodical/cdxb200906021 [15] 刘素纯, 萧浪涛, 廖柏寒.铅胁迫与黄瓜幼苗生长及内源激素关系的研究[J].农业环境科学学报, 2006, 25(3):592-596. doi: 10.3321/j.issn:1672-2043.2006.03.010 [16] 王学礼, 常青山, 侯晓龙, 等.三明铅锌矿区植物对重金属的富集特征[J].生态环境学报, 2010, 19(1):108-112. doi: 10.3969/j.issn.1674-5906.2010.01.021 [17] 刘英杰, 朱雪梅, 林立金, 等.冬季农田杂草荠菜对铅的生理响应及积累特性研究[J].农业环境科学学报, 2016, 35(1):29-36. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201601004 [18] SUN Y, ZHOU Q, DIAO C. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.[J]. Bioresource Technology, 2008, 99(5):1103-1110. doi: 10.1016/j.biortech.2007.02.035 [19] 石汝杰, 陆引罡. 4种草本植物对酸性黄壤中铅的吸收特性研究[J].水土保持学报, 2007, 21(3):73-76. doi: 10.3321/j.issn:1009-2242.2007.03.017 [20] 段德超, 于明革, 施积炎.植物对铅的吸收、转运、累积和解毒机制研究进展[J].应用生态学报, 2014, 25(1):287-296. http://d.old.wanfangdata.com.cn/Periodical/yystxb201401039 [21] DUSHENKOV V, KUMAR P, HARRY M, et al. Rhizofiltration:the use of plants to remove heavy metals from agueous stream[J]. Environmental Science and Technology, 1995, 29(5):1239-1245. doi: 10.1021/es00005a015 [22] RAI P K. An eco-sustainable green approach for heavy metals management:two case studies of developing industrial region[J]. Environmental Monitoring and Assessment, 2012, 184(1):421-448. doi: 10.1007/s10661-011-1978-x [23] BROOKS R R, LEE J, REEVES R D. Detection of nickliferous rocks by analysis of indicator plants[J]. Journal Geochemical Explorration, 1997(7):49-77. https://www.sciencedirect.com/science/article/pii/0375674277900747 [24] MONNI S, SALEMAA M. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter in southwest Finland[J]. Environmental pollution, 2000, 109(2):211-221. doi: 10.1016/S0269-7491(99)00265-1 [25] 王红旗, 李华, 陆泗进.羽叶鬼针草对Pb的吸收特性及修复潜力[J].环境科学, 2005, 26(6):143-147. doi: 10.3321/j.issn:0250-3301.2005.06.030