Cd-Uptake of Perilla frutescens (L.)Britt as Affected by Cultivation Conditions
-
摘要: 为探讨种植密度、施肥及种植方式对紫苏镉富集能力的影响,通过田间随机区组试验,分析了不同栽培措施下紫苏各部位的镉含量及镉富集总量。结果表明,种植密度和种植方式显著影响紫苏不同部位镉的吸收和积累,施肥方式显著影响紫苏茎叶和籽粒中镉的吸收和积累。低密度种植D1(行株距30 cm×20 cm)和移栽种植方式(P1)可提高紫苏地上部及全株镉含量,施用有机肥(F1)可提高紫苏籽粒镉含量。镉迁移系数(TF)和富集系数(BCF)随种植密度的增大而减小,移栽紫苏的TF和BCF高于直播紫苏。低密度、移栽种植处理的紫苏镉含量(4.57~5.08 mg·kg-1)、TF(1.43~1.75)和BCF(2.08~2.24)均处于最高水平。低密度(D1)和高密度栽培D3(行株距20 cm×20 cm)紫苏镉富集总量无差异,均显著高于中密度D2(行株距25 cm×20 cm)栽培紫苏镉富集总量。田间栽培条件下镉在紫苏不同部位的分配比例:茎叶>根部>籽粒,其中地上部的平均分配比为83.11%。总之,混合施肥促进直播紫苏镉富集,施用复合肥有利于移栽紫苏镉向地上部迁移,适宜的高密度可提高紫苏对镉污染土壤的修复效率。Abstract: Effects of planting density, fertilization and other cultivation conditions on the Cd uptake of Perilla frutescens(L.) Britt was studied under a randomized block field experiment. Both density and starting from sowed seeds or transplanted seedlings of the planting practices were found to significantly affect the uptake and accumulation in parts of the plant.Fertilization exerted a significant effect on the uptake in the seeds. A high content of Cd was found in the entire plant when P. frutescens was started by transplanting seedlings (P1) with a low planting density (i.e., at row and plant spacings of 30 cm×20 cm) (D1), and in the seeds by applying organic fertilizer (F1). The Cd translocation factor (TF) and bioconcentration factors (BCF) of the plants decreased as the planting density increased. They were higher for the transplanted than the seeded P. frutescens. Thus, the maximum Cd content (i.e., 4.57-5.08 mg·kg-1), TF(i.e., 1.43-1.75) and BCF(2.08-2.24) of P. frutescens were observed when the plants were transplanted from seedlings and allowed adequate space to grow. The Cd accumulation did not differ significantly between D1 and planting spacing of 20 cm×20 cm(D3). However, both D1 and D3 yielded plants with significantly higher Cd than if the spacing was 25 cm×20 cm (D2). Cd in the above-ground stems and leave saccounted for 83.11% of the entire plant and was higher than the under-ground roots, while the seeds had the least.It appeared that organic fertilizer promoted Cd uptake in the seeded plants, while compound fertilizer benefited the Cd translocating to the above-ground plant parts, and appropriate planting density facilitated the phytoremediation of Cd-contaminated soil.
-
Key words:
- Perilla frutescens (L.)Britt /
- cultivating method /
- cadmium /
- accumulation /
- phytoremediation
-
表 1 紫苏不同部位镉含量方差分析
Table 1. ANOVA on Cd contents in parts of P. frutescens
因素 根 茎叶 籽粒 地上部 全株 迁移系数TF 富集系数BCF D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 F 0.21 0.35 0.00 0.13 0.07 0.20 0.13 P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 D*F 0.00 0.03 0.28 0.03 0.01 0.13 0.03 D*P 0.03 0.00 0.55 0.00 0.00 0.00 0.00 F*P 0.89 0.01 0.26 0.01 0.01 0.29 0.01 D*F*P 0.00 0.00 0.00 0.00 0.01 0.00 0.00 表 2 不同处理紫苏镉含量
Table 2. Cd contents of P. frutescens under different treatments
[单位/(mg·kg-1)] 处理 根 茎叶 籽粒 地上部 全株 D1F1P1 3.73±0.36bcdef* 5.54±0.35a 4.17±0.34ab 5.30±0.26a 5.08±0.24a D1F1P2 3.85±0.19bcde 3.46±0.19bc 4.72±0.83a 3.57±0.19b 3.62±0.19b D1F2P1 3.03±0.27fgh 5.41±0.54a 4.19±0.87ab 5.27±0.55a 4.88±0.43a D1F2P2 3.11±0.36efg 3.45±0.31bc 3.66±0.45bc 3.48±0.32bc 3.41±0.27bc D1F3P1 3.15±0.35defg 5.22±0.48a 2.41±0.04efg 4.91±0.41a 4.57±0.26a D1F3P2 4.21±0.28b 2.77±0.38cde 3.71±0.28bc 2.84±0.34de 3.1±0.22cd D2F1P1 1.91±0.36i 2.49±0.24de 2.32±0.33efg 2.47±0.24de 2.36±0.16fg D2F1P2 3.88±0.54bcd 2.44±0.44de 3.65±0.54bc 2.56±0.4de 2.84±0.29def D2F2P1 1.97±0.24i 2.19±0.45de 1.99±0.62fg 2.17±0.46e 2.13±0.42g D2F2P2 2.96±0.40gh 2.24±0.06de 3.34±0.53bcd 2.36±0.10de 2.46±0.08fg D2F3P1 2.37±0.40hi 2.51±0.58de 2.49±0.09def 2.51±0.49de 2.48±0.46fg D2F3P2 2.77±0.61gh 2.57±0.32de 2.15±0.18efg 2.53±0.28de 2.57±0.15defg D3F1P1 3.93±0.38bc 2.18±0.39de 2.60±0.39def 2.22±0.39de 2.52±0.32efg D3F1P2 3.75±0.52bcdef 2.91±0.15cd 3.04±0.20cde 2.93±0.16cd 3.07±0.08cde D3F2P1 3.71±0.24bcdef 4.00±0.78b 2.51±0.59def 3.86±0.75b 3.84±0.65b D3F2P2 4.88±0.60a 2.10±0.33e 2.61±0.13def 2.15±0.29e 2.65±0.17defg D3F3P1 3.33±0.29cdefg 2.94±0.22cd 1.59±0.59g 2.77±0.13de 2.86±0.15def D3F3P2 4.13±0.47b 2.25±0.07de 2.80±0.17def 2.32±0.05de 2.62±0.08defg 注:同列数据后无相同小写字母代表处理间镉含量的差异达显著水平(P<0.05),表 4同。 表 4 不同处理紫苏镉富集总量
Table 4. Cd-accumulation in P. frutescens under different treatments
[单位/(g·hm-2)] 处理 根 茎叶 籽粒 地上部 全株 D1F1P1 4.26±0.78g 30.79±3.13ab 4.98±0.74a 35.77±3.30a 40.04±4.01abcd D1F1P2 5.87±0.51fg 24.09±2.03bcde 3.18±0.57bcd 27.28±2.46bcdef 33.15±2.96defgh D1F2P1 4.24±0.75g 30.71±3.39ab 2.94±0.64bcde 33.64±3.94abc 37.88±3.74abcdef D1F2P2 6.25±1.11fg 26.08±1.84bcde 3.92±0.51b 30.01±2.21abcdef 36.26±2.39abcdefg D1F3P1 4.55±0.39g 28.7±3.53abcd 1.66±0.23f 30.36±3.76abcdef 34.91±3.63cdefgh D1F3P2 10.67±1.69b 28.39±3.27abcd 2.7±0.56cdef 31.09±2.8abcde 41.76±1.66abc D2F1P1 4.34±1.02g 20.96±2.68ef 1.9±0.39ef 22.85±2.64fg 27.19±3.01hi D2F1P2 6.86±1.35ef 14.71±3.37f 2.53±0.5cdef 17.25±3.68g 24.10±4.18i D2F2P1 4.30±0.56g 21.85±4.77de 2.61±1.02cdef 24.46±5.65defg 28.76±6.21ghi D2F2P2 6.29±1.37fg 19.99±1.23ef 3.43±0.75bcd 23.43±1.82efg 29.71±2.95fghi D2F3P1 4.32±1.09g 19.51±4.92ef 3.22±0.32bcd 22.73±4.81fg 27.06±5.62hi D2F3P2 7.76±1.82cdef 28.71±3.24abcd 2.21±0.18def 30.93±3.28abcde 38.68±1.93abcde D3F1P1 8.56±0.40cde 20.1±3.36ef 2.84±0.39bcdef 22.94±3.73fg 31.5±3.34efghi D3F1P2 9.47±1.42bc 28.94±2.15abcd 5.28±0.63a 34.22±2.35ab 43.69±1.94a D3F2P1 7.27±1.08def 33.53±8.79a 2.25±0.86def 35.77±9.39a 43.04±10.39abc D3F2P2 14.79±0.95a 25.37±4.77bcde 3.27±0.49bcd 28.64±4.9abcdef 43.43±4.18ab D3F3P1 7.06±1.24ef 29.35±3.66abc 2.25±0.65def 31.6±3.25abcd 38.66±4.43abcde D3F3P2 9.20±0.52bcd 22.27±1.96cde 3.69±1.1bc 25.95±2.7cdef 35.15±2.73bcdefgh 表 3 紫苏不同部位镉富集总量、分配比方差分析
Table 3. Variance analysis on Cd-accumulation and distribution in parts of P. frutescens
因素 镉富集总量 镉分配比 根 茎叶 籽粒 地上部 全株 根 茎叶 籽粒 D 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.19 F 0.12 0.04 0.00 0.14 0.07 0.67 0.05 0.00 P 0.00 0.08 0.00 0.26 0.12 0.00 0.00 0.01 D*F 0.00 0.18 0.00 0.13 0.05 0.00 0.60 0.00 D*P 0.47 0.26 0.00 0.26 0.35 0.65 0.60 0.01 F*P 0.01 0.11 0.42 0.19 0.18 0.07 0.04 0.04 D*F*P 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -
[1] 蔡美芳, 李开明, 谢丹平, 等.我国耕地土壤重金属污染现状与防治对策研究[J].环境科学与技术, 2014, 37(S2):223-230. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=FJKS2014S2046&dbname=CJFD&dbcode=CJFQ [2] THEVENOD, LEE W K.Toxicology of cadmium and its damage to mammalian organs[J].Metal Ions in Life Sciences, 2013(11):415-490. http://cn.bing.com/academic/profile?id=41f6d2d14cf6141856bcda32a6260b8c&encoded=0&v=paper_preview&mkt=zh-cn [3] ALI H, KHAN E, SAJAD M A.Phytoremediation of heavy metals concepts and applications[J].Chemosphere, 2013, 91(7):869-881. doi: 10.1016/j.chemosphere.2013.01.075 [4] SHARMA S, SINGH B, MANCHANDA V K.Phytoremediation:role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water[J].Environmental Science & Pollution Research, 2015, 22(2):946-962. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226030983/ [5] 徐宁, 俞燕芳, 毛平生, 等.桑树修复土壤重金属污染的研究进展[J].农学学报, 2015, 5(1):37-40. http://d.old.wanfangdata.com.cn/Periodical/zgncxkkj2015010008 [6] PEHLUVAN M, KARLIDAG H, TURAN M.Heavy metal levels of mulberry (Morusalba L.) grown at different distances from the roadsides[J].The Journalof Animal & Plant Sciences, 2012, 22(3):665-667. https://www.researchgate.net/publication/251875744_HEAVY_METAL_LEVELS_OF_MULBERRY_(MORUS_ALBA_L.)_GROWN_AT_DIFFERENT_DISTANCES_FROM_THE_ROADSIDES [7] NADA E, FERJANI B A, ALI R, et al.Cadmium-induced growth inhibitionand alteration of biochemical parameters in almond seedlings grown insolution culture[J].Acta Physiologiae Plantarum, 2007, 29(1):57-62. doi: 10.1007/s11738-006-0009-y [8] KIM H, JEUN Y C.Resistance induction and enhanced tuber productionby pre-inoculation with bacterial strains in potato plants against phytophthora infestans[J].Mycobiology, 2006, 34(2):67-72. doi: 10.4489/MYCO.2006.34.2.067 [9] 沈奇, 商志伟, 杨森, 等.紫苏属植物的研究进展及发展潜力[J].贵州农业科学, 2017, 45(9):93-102. doi: 10.3969/j.issn.1001-3601.2017.09.025 [10] 谢惠玲, 刘杰, 陈珊, 等.紫苏叶片响应镉胁迫的蛋白质差异表达分析[J].中国生态农业学报, 2014, 22(10):1207-1213. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201410015 [11] 刘杰. 紫苏耐镉胁迫的生理响应及其土壤重金属镉修复潜力评价[D]. 福州: 福建农林大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10389-1012425883.htm [12] 李圆萍. 外源水杨酸和茉莉酸对紫苏镉胁迫的缓解效应[D]. 福州: 福建农林大学, 2016. [13] 谢惠玲, 陈爱萍, 张凤英, 等.紫苏对不同浓度镉胁迫的生理响应[J].中国生态农业学报, 2011, 19(3):672-675. http://d.old.wanfangdata.com.cn/Periodical/stnyyj201103032 [14] ZHENG X Y, CHEN S, ZHENG M Q, et al.Development of HPLC-ELSD method for determination of phytochelatins and glutathione in Perilla frutescens under cadmium stress condition[J].Royal society open science, 2018, 5(5):171659. doi: 10.1098/rsos.171659 [15] 李涛, 刘玉军, 白红彤, 等.栽培密度对薄荷生长策略和光合特性的影响[J].植物生理学报, 2012, 48(9):895-900. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201204874209 [16] 武荣芳, 丁林峰.种植密度对超富集植物根际Cd生物有效性影响[J].科技视界, 2017(36):143-144. doi: 10.3969/j.issn.2095-2457.2017.36.095 [17] 鲁雁伟, 揭雨成, 佘玮, 等.苎麻种植密度对重金属Pb、As富集能力影响研究[J].中国农学通报, 2010, 26(17):337-341. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201017074 [18] 蒋诗梦, 颜新培, 龚昕, 等.桑树品种间重金属镉的分布与富集规律研究[J].中国农学通报, 2016, 32(22):76-83. doi: 10.11924/j.issn.1000-6850.casb15120167 [19] LUO J, HE M, QI S, et al.Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus[J].Environmental Science & Pollution Research, 2018, 25(12):11343-11350. http://cn.bing.com/academic/profile?id=2a8052fd48bc1fbd3625946cb85dd379&encoded=0&v=paper_preview&mkt=zh-cn [20] LIPHADZI M S, KIRKHAM M B, MANKIN K R, et al.EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm[J].Plant and Soil, 2003, 257(1):171-182. doi: 10.1023/A:1026294830323 [21] 郑梅琴, 肖清铁, 吕荣海, 等.紫苏生长与产量对种植密度、施肥及种植方式的响应[J].江西农业大学学报, 2018, 40(1):15-23. http://d.old.wanfangdata.com.cn/Periodical/jxnydxxb201801003 [22] 李顺江, 李鹏, 李新荣, 等.不同肥源、施氮量对土壤——作物系统中铬、镉含量的影响[J].农业资源与环境学报, 2015, 32(3):235-241. http://d.old.wanfangdata.com.cn/Periodical/nyhjyfz201503004 [23] HONG C O, CHUNG D Y, LEE D K, et al.Comparison of phosphate materials for immobilizing cadmium insoil[J].Archives of Environmental Contamination & Toxicology, 2010, 58(2):268-274. http://www.springerlink.com/content/0348753k03903u6h/ [24] 区惠平, 周柳强, 曾艳, 等.施肥后玉米镉污染风险评价分析[J].南方农业学报, 2016, 47(7):1117-1122. doi: 10.3969/j:issn.2095-1191.2016.07.1117 [25] 谷佳林, 梁丽娜, 苏世鸣, 等.不同施肥处理对油麦菜镉吸收、硝酸盐含量及产量的影响[J].北方园艺, 2018(4):117-120. http://d.old.wanfangdata.com.cn/Periodical/bfyany201804019 [26] 王寅, 汪洋, 鲁剑巍, 等.直播和移栽冬油菜生长和产量形成对氮磷钾肥的响应差异[J].植物营养与肥料学报, 2016, 22(1):132-142. http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201601019