Contents and Transport of Heavy Metals in Grain Parts of Rice Grown on Cd-Contaminated Soil
-
摘要: 为了解镉污染土壤中稻谷各部位重金属的含量及其迁移特征,以闽西矿区周边种植的水稻为研究对象,测定稻谷各部位的Cd、Pb、Cu、Zn含量,分析这4种重金属在稻谷各部位的分布及迁移规律,结果表明:在无镉污染、轻度镉污染、中度镉污染、重度镉污染环境中种植的水稻,其Cd、Cu、Zn在稻谷中不同部位的含量基本呈糠粉>糙米>精米>稻壳的趋势,即镉污染及其程度不会影响Cd、Cu、Zn在稻谷中不同部位的分布,而Pb在稻谷各部位的含量呈稻壳>糠粉>糙米>精米或糠粉>稻壳>精米>糙米的趋势;稻壳中的Cd较易被迁移到糙米中,糙米中的Pb、Cu、Zn极易积累到糠粉中,而糠粉中积累的Cd、Pb、Cu、Zn较难被迁移到精米中;糙米从去掉糠粉加工成精米的过程中,Cd、Pb、Cu、Zn含量最大程度可分别减少70.2%、95.0%、97.1%和81.4%;重金属在稻谷各部位间的迁移能力与各部位重金属含量有一定的相关性。说明糠粉对这4种重金属有较强的吸收力,稻谷加工过程尽可能去除糠粉部位可以减少食用部分的重金属含量。Abstract: Contents and transport of heavy metals in various parts of a grain from the rice grown on Cd-contaminated soil were determined. The contents of Cd, Pb, Cu and Zn in specimens collected from the mining regions in western Fujian were analyzed to study the distribution and transport characteristics of these heavy metals in the parts of the grain. The results showed that although the metal distribution was not affected by the severity of soil pollution, the Cd, Cu or Zn contained in a grain increased in the order of:bran > brown rice > milled rice > hull, and, the Pb in the order of:hull > bran > brown rice > milled rice or bran > hull > milled rice > brown rice. There seemed a significant correlation between the contents and transport of heavy metals in the grains. And, the bran appeared to absorb the heavy metals more readily than other tissues, as it was easier for Cd in the hull to transport to the brown rice grains, or Pb, Cu and Zn in brown rice to the bran; but more difficult for Cd, Pb, Cu and Zn in the bran to move to the milled grains. As a result, the contents of Cd, Pb, Cu and Zn in the grains could be maximally reduced by 70.2%, 95.0%, 97.1% and 81.4%, respectively, through the milling process with the removal of bran, thereby, an improvement for the safety of rice consumption.
-
Key words:
- rice grains /
- heavy metals /
- distribution /
- transfer characteristics /
- Cd-pollution
-
图 1 稻谷不同部位重金属含量
注:Cd0为无污染,Cd1为轻度污染,Cd2为中度污染,Cd3为重度污染。图 2同。
Figure 1. Heavy metals in parts of rice grain
表 1 土壤环境质量分级标准
Table 1. Criteria for classification of soil quality
等级 污染指数
(P)污染程度 Ⅰ P≤0.7 清洁(安全) Ⅱ 0.7<P≤1.0 尚清洁(警戒线) Ⅲ 1.0<P≤2.0 轻度污染 Ⅳ 2.0<P≤3.0 中度污染 Ⅴ P>3.0 重度污染 注:表中资料来源于文献[15]。 表 2 供试土壤样品基本理化性质
Table 2. Physiochemical properties of soil sample collected from paddy field
理化指标 Cd0 Cd1 Cd2 Cd3 pH 5.20±0.014 5.05±0.007 6.18±0.014 4.85±0.014 有机质/(g·hg-1) 3.10±0.126 3.48±0.037 2.23±0.026 5.07±0.061 全氮/(g·hg-1) 0.152±0.002 0.161±0.001 0.125±0.001 0.166±0.002 全磷/(g·hg-1) 0.029±0.004 0.071±0.003 0.101±0.007 0.131±0.001 全钾/(g·hg-1) 1.90±0.018 3.81±0.017 4.45±0.060 4.16±0.038 Cd/ (mg·kg-1) 0.089±0.002 1.32±0.001 2.77±0.005 3.14±0.058 表 3 稻谷各部位Cd含量与Cd迁移系数的相关性
Table 3. Correlation between Cd contents and Cd transport coefficients of parts of rice grain
表 4 稻谷各部位Pb含量与Pb迁移系数的相关性
Table 4. Correlation between Pb contents and Pb transport coefficients of parts of rice grain
Pb的迁移 稻谷各部位Pb含量 稻壳 糙米 糠粉 精米 稻壳→糙米(TF1) -0.626 0.033 0.048 0.191 糙米→糠粉(TF2) 0.608 0.788 0.825 -0.987* 糠粉→精米(TF3) -0.906* -0.618 -0.659 -0.539 表 5 稻谷各部位Cu含量与Cu迁移系数的相关性
Table 5. Correlation between Cu contents and Cu transport coefficients of parts of rice grain
Cu的迁移 稻谷各部位Cu含量 稻壳 糙米 糠粉 精米 稻壳→糙米(TF1) 0.020 0.492 -0.120 0.633 糙米→糠粉(TF2) -0.683 -0.902* -0.110 -0.975* 糠粉→精米(TF3) 0.562 0.841 -0.002 0.945 表 6 稻谷各部位Zn含量与Zn迁移系数的相关性
Table 6. Correlation between Zn contents and Zn transport coefficients of parts of rice grain
Zn的迁移 稻谷各部位Zn含量 稻壳 糙米 糠粉 精米 稻壳→糙米(TF1) -0.195 0.723 0.456 0.673 糙米→糠粉(TF2) -0.741 -0.963* 0.336 -0.930* 糠粉→精米(TF3) 0.764 0.954* -0.309 0.942 -
[1] SINGH R P, AGRAWAL M. Variations in heavy metal accumulation, growth and yield of rice plants grown at different sewage sludge amendment rates[J]. Ecotoxicology and Environmental Safety, 2010, 73(4):632-641. doi: 10.1016/j.ecoenv.2010.01.020 [2] SINGH A, SHARMA R K, AGRAWAL M, et al. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India[J]. Tropical Ecology, 2010, 51(2):375-387. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0217042035 [3] MARKOVI M, CUPA S, DUROVI R, et al. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia[J]. Archives of Environmental Contamination and Toxicology, 2010, 58(2):341-351. doi: 10.1007/s00244-009-9359-y [4] 路子显.粮食重金属污染对粮食安全, 人体健康的影响[J].粮食科技与经济, 2011, 36(4):14-17. doi: 10.3969/j.issn.1007-1458.2011.04.004 [5] 崔玉静, 赵中秋, 刘文菊, 等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报, 2003, 1(10):2133-2143. doi: 10.3321/j.issn:1000-0933.2003.10.022 [6] ZENG F, MAO Y, CHENG W, et al. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice[J]. Environmental pollution, 2008, 153(2):309-314. doi: 10.1016/j.envpol.2007.08.022 [7] 杨祥田, 周翠, 何贤彪, 等.田间试验条件下不同基因型水稻对Cd和Pb的吸收分配特征[J].农业环境科学学报, 2013, 32(3):438-444. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20132013042300010557 [8] 刘侯俊, 梁吉哲, 韩晓日, 等.东北地区不同水稻品种对Cd的累积特性研究[J].农业环境科学学报, 2011, 30(2):220-227. http://d.old.wanfangdata.com.cn/Periodical/nyhjbh201102003 [9] 周航, 周歆, 曾敏, 等. 2种组配改良剂对稻田土壤重金属有效性的效果[J].中国环境科学, 2014, 34(2):437-444. http://d.old.wanfangdata.com.cn/Periodical/zghjkx201402025 [10] 鞠兴荣, 丁哲慧, 高瑀珑, 等.重金属在水稻中的分布及加工过程对其影响的探讨[J].粮食与食品工业, 2016, 23(3):1-6. doi: 10.3969/j.issn.1672-5026.2016.03.001 [11] 仲维功, 杨杰, 陈志德, 等.水稻品种及其器官对土壤重金属元素Pb、Cd、Hg、As积累的差异[J].江苏农业学报, 2006, 22(4):331-338. doi: 10.3969/j.issn.1000-4440.2006.04.004 [12] 田阳. 稻米加工技术对产品镉含量的影响[D]. 北京: 中国农业科学院, 2013. http://cdmd.cnki.com.cn/Article/CDMD-82101-1013357531.htm [13] 李琛, 章月莹.不同加工程度对稻米中铅含量的影响[J].粮油仓储科技通讯, 2013, 29(6):46-48. http://d.old.wanfangdata.com.cn/Periodical/lycckjtx201306015 [14] 刘兰英, 涂杰峰, 黄薇, 等.福建闽西矿区周边土壤Cd、Pb、Cr含量及风险评价[J].福建农业学报, 2017, 32(1):68-74. http://d.old.wanfangdata.com.cn/Periodical/fjnyxb201701015 [15] 刘凤枝, 马锦秋.土壤监测分析实用手册[M].北京:化学工业出版社, 2010:338-339. [16] GUPTA S, NAYEK S, SAHHAR N, et al. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory[J]. Environmental geology, 2008, 55(4):731-739. doi: 10.1007/s00254-007-1025-y [17] SATPATHY D, REDDY M V, DHAL S P. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India[J]. BioMed research international, 2014, 2014:545473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233906114 [18] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品污染物限量: GB 2762-2017[S]. 北京: 中国标准出版社, 2017. [19] 中华人民共和国农业部. 粮食(含谷物, 豆类, 薯类)及制品中铅、铬、镉、汞、硒、砷、铜、锌等八种元素限量: NY 861-2004[S]. 北京: 中国标准出版社, 2004. [20] 莫文莲, 陈祎清, 孙禧华.石墨炉原子吸收光谱法测定稻米各加工阶段铅含量研究[J].粮食与油脂, 2010(8):34-35. doi: 10.3969/j.issn.1008-9578.2010.08.011 [21] 倪小英, 许艳霞, 梅广, 等.主要重金属在污染稻谷籽粒中的分布规律研究[J].中国粮油学报, 2017, 32(1):7-11. doi: 10.3969/j.issn.1003-0174.2017.01.002 [22] 查燕, 杨居荣.污染谷物中重金属的分布及加工过程的影响[J].环境科学, 2000, 21(3):52-55. http://d.old.wanfangdata.com.cn/Periodical/hjkx200003012