Active Components in Wild and Cultivated Ganoderma Fruiting Bodies
-
摘要: 研究采集的野生灵芝子实体与其进行组织分离后同菌株人工代料的栽培子实体,比较二者主要活性成分的差异,分析判断何者利用价值更高,以挖掘到更好、利用价值更高的灵芝子实体。ITS(Internal Transcribed Spacer)鉴定结果表明采集的野生菌株YX、ZJ均属于Ganoderma sp.组群且两个G.sp.菌株之间的相似度较高。主要活性成分检测结果显示:野生灵芝子实体YX多糖含量为7.93 mg·g-1,是其栽培子实体多糖含量(10.25 mg·g-1)的77%;三萜含量7.16 mg·g-1,是其栽培子实体三萜含量(9.30 mg·g-1)的77%;野生灵芝子实体ZJ的多糖含量(5.34 mg·g-1)是其栽培子实体(6.72 mg·g-1)的87%,三萜含量(9.30 mg·g-1)是其栽培子实体(10.66 mg·g-1)的75%。利用高效液相色谱分析三萜中各灵芝酸含量发现,两栽培子实体灵芝酸F含量均显著高于其对应野生灵芝子实体。野生与栽培灵芝子实体活性成分差异分析结果表明:同一菌株的栽培子实体多糖、三萜含量明显高于其野生子实体。该研究结果为市场上灵芝产品的选择提供参考,为野生灵芝驯化必要性提供理论依据。Abstract: Major active components in wild and cultivated Ganoderma fruiting bodies were determined for comparison. Internal Transcribed Spacer (ITS) identified the selected wild strains, YX and ZJ, to be Ganoderma sp. with a high homology. The chemical analysis showed the polysaccharide content in the fruiting bodies of YX to be 7.93 mg·g-1, which was 77% of that of the cultivated counterparts (10.25 mg·g-1); the triterpenes of YX to be 7.16 mg·g-1, which was also 77% of that of the cultivated fruiting bodies (9.30 mg·g-1); the polysaccharides in ZJ fruiting bodies to be 5.34 mg·g-1, which was 87% of the cultivated counterparts (6.72 mg·g-1); and, the triterpenes of ZJ to be 9.30 mg·g-1, which was 75% of the cultivated fruiting bodies (10.66 mg·g-1). HPLC showed the ganoderic acid F in the fruiting bodies of the cultured Ganoderma to be significantly higher than that in the wild of a same strain as well. The results demonstrated a distinctive difference on the active ingredients between the G.lucidum grown in the wild and that cultivated artificially which could be of interest for marketing and breeding of the fungal material used as a dietary supplement.
-
Key words:
- wild Ganoderma /
- cultivated Ganoderma /
- ITS sequencing /
- main active components
-
表 1 指纹图谱相似度比较
Table 1. Similarity on fingerprints
项目 S1 S2 对照指纹图谱 S1 10.439 0.753 S2 0.439 10.922 对照指纹图谱 0.753 0.9221 -
[1] 赵继鼎, 张小青.中国真菌·灵芝科[M].北京:科学出版社, 2000:185-192. [2] ZHOU X W, SU K Q, ZHANG Y M. Applied modern biotechnology for cultivation of Ganoderma and development of their products[J]. Applied Microbiology and Biotechnology, 2012, 93(3):941-963. doi: 10.1007/s00253-011-3780-7 [3] 林志彬.灵芝的现代研究[M].北京:北京医科大学、中国协和医科大学联合出版社, 1996.145-146. [4] 李平作, 章克昌.灵芝胞外多糖的分离纯化及生物活性[J].微生物学报, 2000, 40(2):217-220. http://www.cqvip.com/QK/97426A/200304/8342882.html [5] 李晔, 朱忠敏, 姚渭溪, 等.灵芝三萜类化合物的研究进展[J].中国中药学杂志, 2012, 37(2):165-171. http://www.cqvip.com/QK/95973X/201202/1002016400.html [6] 李国华, 李晔, 梅锡玲, 等.灵芝三萜类化合物研究进展[J].中草药, 2015, 46(12):1858-1862. doi: 10.7501/j.issn.0253-2670.2015.12.028 [7] 曹恒生, 赵立新.野生和栽培灵芝主要生化成分的比较[J].安徽农业科学, 1996(S2):54-56. http://www.cqvip.com/QK/90168X/1996S2/4001091408.html [8] 陈康林.野生灵芝和人工栽培灵芝的不同[J].医药世界, 2008(7):70-71. http://www.cqvip.com/QK/93998X/201404/663531077.html [9] 吉清妹, 潘孝忠, 符传良, 等.野生灵芝与栽培灵芝主要成分和功效的比较分析[J].热带农业科学, 2015, 35(12):80-83. doi: 10.3969/j.issn.1009-2196.2015.12.015 [10] 傅俊生. 草菇杂交育种研究及其分子遗传标记的建立[D]. 福州: 福建农林大学, 2007: 18. http://cdmd.cnki.com.cn/article/cdmd-10389-2007136027.htm [11] WHITE T J, BRUNS T, LEE S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics[J]. PCR-Protocols:A guide to methods and applications, 1994, 38:315-322. http://cn.bing.com/academic/profile?id=4a2cef2a8fc47e1fbe684b4b2f80e023&encoded=0&v=paper_preview&mkt=zh-cn [12] FELSENSTEIN J. Confidence limits on phylogenies:all approach using the bootstrap[J]. Evolution, 1985, 39(4):783-791. https://www.researchgate.net/publication/317316010_CONFIDENCE_LIMITS_ON_PHYLOGENIES_AN_APPROACH_USING_THE_BOOTSTRAP [13] KIMURA M. Estimation of evolutionary distances between homologo us nucleotide sequences[J].Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(1):454-458. http://cn.bing.com/academic/profile?id=29648c0f1abdf62b6861e70bc1d65ac6&encoded=0&v=paper_preview&mkt=zh-cn [14] 马敏, 刘嘉宝, 陈兰兰.苯酚-硫酸法测定多糖含量显色条件的优化与改进[J].江苏农业科学, 2015, 43(12):323-324. http://www.cnki.com.cn/Article/CJFDTotal-JSNY201512102.htm [15] 黄书铭, 杨新林, 张自强, 等.超声循环提取灵芝中三萜类化合物的研究[J].中草药, 2004, 35(5):508-510. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_zcy200405013 [16] 张志军, 朱越, 罗莹, 等.灵芝中三萜化合物提取工艺[J].食品研究与开发, 2009, 30(9):81-83. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbnydxxb200804014 [17] 金珊珊, 柯斌榕, 吴小平, 等.适于菌草代料栽培的杂交灵芝菌株选育[J].亚热带资源与环境学报, 2014, 9(4):56-62. http://www.cqvip.com/QK/83207A/201404/663721190.html [18] 叶丽云, 林强, 刘梅, 等.钙离子和水杨酸诱导灵芝多糖和三萜的合成[J].菌物学报, 2017, 36(2):220-228. http://manu40.magtech.com.cn/Jwxb/CN/abstract/abstract3570.shtml [19] 苏春丽, 唐传红, 张劲松, 等.基于rDNA ITS序列探讨中国栽培灵芝菌株的亲缘关系[J].微生物学报, 2007, 47(1):11-16. http://www.cnki.com.cn/Article/CJFDTOTAL-RDZX201305012.htm