Utilizing Transcriptome of Purple Abelmoschus esculentus for Sequence Analysis on Anthocyanidin Gene
-
摘要: 紫色秋葵富含花青素,因此其全株及果实均为紫红色,为获取正常生长状态下紫色秋葵花青素合成代谢相关基因,采用Illumina HiSeq 2500高通量转录组测序技术对紫色秋葵全转录功能基因组测序后组装,再通过Nr、SwissProt和GO等三大数据库进行花青素相关功能基因筛选。三大数据库涉及35个花青素相关Unigene,具体包括19个花青素相关糖基转移酶、6个花青素酰基转移酶家族基因,5个无色花色素双加氧酶(合酶)以及5个花色素相关还原酶。这些花青素相关基因在Nr及SwissProt数据库中涉及较多相关植物,包括拟南芥、可可、树棉、木薯、苹果及葡萄等。聚类分析研究表明:涉及花青素相关四大家族成员的35个Unigene中,无色花色素双加氧酶亲缘关系最近,花青素酰基转移酶次之,花青素相关还原酶亲缘关系稍远,而花青素相关糖基转移酶家族成员亲缘关系最远。本研究获取的紫色秋葵众多花青素相关转移酶、合酶及还原酶等相关Unigene,为进一步研究紫色秋葵或其他植物的花青素合成代谢过程中基因克隆分析等奠定了坚实基础。Abstract: The rich content of anthocyanidin in purple Abelmoschus esculentus renders the characteristic color of the plant and its fruits. This study used the transcriptome of the plant to study the genetics associated with the anthocyanidin biosynthesis pathway under natural conditions. The transcriptome was sequenced using the Illumina HiSeq 2500 platform to isolate 35 anthocyanidin unigenes from the Nr, SwissProt and GO databases. These unigenes belonged to 4 distinct gene types including 19 of anthocyanidin-related glucosyltransferases, 6 of anthocyanidin-related acyltransferases, 5 of leucoanthocyanidin dioxygenases, and 5 of anthocyanidin-related reductases. The genes were annotated by Nr and SwissProt databases to show their associations with a variety of plants, such as Arabidopsis thaliana, Theobroma cacao, Gossypium arboretum, Manihot esculenta, Malus domestica and Vitis vinifera. A clustering analysis indicated that the unigenes had the closest relationship with the leucoanthocyanidin dioxygenase family, followed by the anthocyanin-related acyltransferases and the reductases, while the anthocyanidin-related glucosyltransferases showed the farthest homology. Identification of the 35 anthocyanidin-related unigenes would be useful for the gene cloning and analysis in studying anthocyanin biosynthesis of purple A. esculentus or other plants rich in anthocyanidin.
-
表 1 19个花青素相关糖基转移酶信息分析
Table 1. Information on 19 anthocyanin-related glucosyltransferase
编码 FPKM 核苷酸 非冗余蛋白数据库(Nr) 蛋白质序列数据库(SwissProt) 基因本体论数据库(GO) 基因 匹配物种 基因 匹配物种 C80207 0.96 423 UDP糖基转移酶 可可 花青素3,2-O-双糖基转移酶 矮牵牛 花青素3-O-糖基转移酶 C4554 0.99 610 未知功能蛋白 中粒咖啡 UDP-糖基转移酶 拟南芥 花青素3-O-糖基转移酶 C74868 1.13 429 未知功能蛋白 树棉 花青素3-O-糖基转移酶 草莓 转移酶活性 C72801 1.27 391 UDP糖基转移酶 可可 UDP糖基转移酶 拟南芥 花青素3-O-糖基转移酶 C68173 1.34 325 UDP糖基转移酶 可可 花青素3-O-糖基转移酶 葡萄 转移酶活性 c16602 1.35 857 花青素3-O-糖基转移酶 可可 花青素3-O-糖基转移酶 木薯 未注释到信息 c17288 1.58 578 UDP糖基转移酶 可可 脱落酸β-葡糖基转移 赤豆 花青素3-O-糖基转移酶 c62098 1.94 587 UGT蛋白 可可 UDP糖苷环烯醚萜糖基转移酶 长春花 花青素3-O-糖基转移酶 c1778 2.61 372 黄酮类7-O糖基转移酶 可可 花青素3, 5-O-糖基转移酶 美女樱 UDP糖基转移酶 C43129 3.42 612 唐-葡萄糖转移酶 可可 花青素3-O-糖基转移酶 木薯 花青素3-O-糖基转移酶 C40678 3.61 717 UDP糖基转移酶 可可 花青素3, 5-O-糖基转移酶 月季 对苯二酚葡糖基转移酶 C44130 4.75 743 超氧化物歧化酶铜伴侣蛋白 甜叶菊 花青素3-O-糖基转移酶 木薯 未注释到信息 C58548 8.23 519 唐-葡萄糖转移酶 可可 花青素3-O-糖基转移酶 木薯 花青素3-O-糖基转移酶 C49793 13.3 1700 UDP糖基转移酶 可可 花青素3-O-糖基-2-O-木糖基转移酶 拟南芥 转移酶活性 C39786 13.32 568 UDP糖基转移酶 可可 UDP糖基转移酶 拟南芥 花青素3-O-糖基转移酶 C50927 17.72 1939 UDP糖基转移酶 可可 UDP糖基转移酶 拟南芥 花青素3-O-糖基转移酶 c18432 21.18 833 UDP糖基转移酶 可可 UDP-糖基转移酶 拟南芥 花青素3-O-糖基转移酶 c16536 60.47 1856 UDP糖基转移酶 可可 马钱苷元糖基转移酶 栀子花 花青素3-O-糖基转移酶 C48231 342.33 1744 UDP糖基转移酶 可可 东莨菪内酯葡糖基转移酶 土豆 花青素3-O-糖基转移酶 表 2 6个花青素相关酰基转移酶信息分析
Table 2. Information on 6 anthocyanin-related acyl-transferase
编码 FPKM 核苷酸 非冗余蛋白数据库(Nr) 蛋白质序列数据库(SwissProt) 基因本体论数据库(GO) 基因 匹配物种 基因 匹配物种 C73355 1.03 400 酰基转移酶 可可 花青素3-O-糖基-6-O-香豆酰转移酶 拟南芥 未注释到信息 C28010 3.56 1664 酰基转移酶 可可 花青素3-O-糖基-6-O-香豆酰转移酶 拟南芥 转移酶 c17535 10.89 370 酰基转移酶 可可 花青素3-O-糖基-6-O-香豆酰转移酶 拟南芥 转移酶 C37660 17.41 401 酰基转移酶 可可 花青素3-O-糖基-6-O-香豆酰转移酶 拟南芥 转移酶 C43671 37.23 1566 酰基转移酶 可可 花青素3-O-糖基-6-O-香豆酰转移酶 拟南芥 转移酶 C49043 89.64 949 酰基转移酶 可可 花青素3-O-糖基-6-O-香豆酰转移酶 拟南芥 转移酶 表 3 5个花青素相关双加氧酶信息
Table 3. Information on 5 anthocyanin-related dioxygenase
编码 FPKM 核苷酸 非冗余蛋白数据库(Nr) 蛋白质序列数据库(SwissProt) 基因本体论数据库(GO) 基因 匹配物种 基因 匹配物种 c3740 1.93 353 无色花色素双加氧酶 树棉 阿魏酰辅酶A羟化酶 拟南芥 未注释到信息 C20762 1.93 896 戊二酸铁双加氧酶 可可 无色花色素双加氧酶 拟南芥 氧化还原酶 c25316 3.97 940 无色花色素双加氧酶 树棉 无色花色素双加氧酶 苹果 铁离子结合 C36803 4.06 755 无色花色素双加氧酶 树棉 无色花色素双加氧酶 苹果 黄酮醇合酶 C42576 46.02 1588 戊二酸铁双加氧酶 可可 无色花色素双加氧酶 苹果 未注释到信息 表 4 5个花青素相关还原酶信息分析
Table 4. Information on 5 anthocyanin-related reductase
编码 FPKM 核苷酸 非冗余蛋白数据库(Nr) 蛋白质序列数据库(SwissProt) 基因本体论数据库(GO) 基因 匹配物种 基因 匹配物种 c23823 0.89 524 二氢黄酮醇还原酶 树棉 花色素还原酶 拟南芥 氧化还原酶 C26348 3.6 1587 结合NADαβ折叠酶 可可 花色素还原酶 拟南芥 花色素还原酶 C38710 3.85 1091 花色素还原酶 葡萄 二氢黄酮醇还原酶 雏菊 未注释到信息 C59615 4.49 393 二氢黄酮醇还原酶 树棉 花色素还原酶 拟南芥 二氢黄酮醇还原酶 C28410 18.9 1831 无色花色素还原酶 可可 无色花色素还原酶 三叶草 无色花色素还原酶 -
[1] 张少平, 邱珊莲, 张帅, 等.黄秋葵种质资源及相关品种选育研究进展[J].农学学报, 2017, 7(6):49-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tcyj200602023 [2] GULIKEN B, GIBIS M, BOYACUOGU D, et al. Impact of liposomal encapsulation on degradation of anthocyanins of black carrot extract by adding ascorbic acid[J].Food and Function, 2017, 8(3):1085-1093. doi: 10.1039/C6FO01385F [3] LIPPERT E, RUEMMELE P, OBERMEIER F, et al.Anthocyanins prevent colorectal cancer development in a mouse model[J].Digestion, 2017, 95(4):275-280. doi: 10.1159/000475524 [4] LIAO H, DONG W, SHI X, et al. Analysis and comparison of the active components and antioxidant activities of extracts from Abelmoschus esculentus L[J].Pharmacognosy Magazine, 2012, 8(30):156-161. doi: 10.4103/0973-1296.96570 [5] YING H, JIANG H, LIU H, et al. Ethyl acetate-n-butanol gradient solvent system for high-speed countercurrent chromatography to screen bioactive substances in okra[J].Journal Chromatography, 2014, 1359(9):117-123. http://cn.bing.com/academic/profile?id=89f617764f71895c97b701daed15bc39&encoded=0&v=paper_preview&mkt=zh-cn [6] DEBSKI H, SZWED M, WICZOWSKI W, et al. UV-B radiation increases anthocyanin levels in cotyledons and inhibits the growth of common buckwheat seedlings[J]. Acta Biologica Hungarica, 2016, 67(4):403-411. doi: 10.1556/018.67.2016.4.6 [7] KALT W, MCDONALD J E, LIU Y, et al. Flavonoid Metabolites in Human Urine during Blueberry Anthocyanin Intake[J].Journal of Agricultural and Food Chemistry, 2017, 65(8):1582-1591. doi: 10.1021/acs.jafc.6b05455 [8] VENANCIO V P, CIPRIANO P A, KIM H, et al. Cocoplum (Chryso balanus icaco L.) anthocyanins exert anti-inflammatory activity in human colon cancer and non-malignant colon cells[J].Food and Function, 2017, 8(1):307-314. doi: 10.1039/C6FO01498D [9] 孙玉燕, 段蒙蒙, 邱杨, 等.萝卜叶片干枯基因的定位[J].园艺学报, 2015, 42(8):1505-1514. http://www.cqvip.com/QK/90024X/201508/665903940.html [10] CARLETTI G, LUCINI L, BUSCONI M, et al. Insight into the role of anthocyanin biosynthesis-related genes in Medicago truncatula mutants impaired in pigmentation in leaves[J]. Plant Physiology and Biochemistry, 2013, 70(9):123-132. http://cn.bing.com/academic/profile?id=0fe3f2bb1250cc04fbee9c42e50332a4&encoded=0&v=paper_preview&mkt=zh-cn [11] SPRINGOB K, NAKAJIMA J, YAMAZAKI M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins[J]. Natural Product Reports, 2003, 20(3):288-303. doi: 10.1039/b109542k [12] 黄金霞, 王亮生, 李晓梅, 等.花色变异的分子基础与进化模式研究进展[J].植物学通报, 2006, 23(4):321-333. http://www.cqvip.com/QK/96906X/200604/22439648.html [13] RAY S, SINGH V, SINGH S, et al. Biochemical and histochemical analyses revealing endophytic Alcaligenes faecalis mediated suppression of oxidative stress in Abelmoschus esculentus challenged with Sclerotium rolfsii[J]. Plant Physiology and Biochemistry, 2016, 109(11):430-441. http://cn.bing.com/academic/profile?id=1f5198639aa5c82f87392902d3be0b61&encoded=0&v=paper_preview&mkt=zh-cn [14] AAMIR M, BOONSUPTHIP W. Effect of microwave drying on quality kinetics of okra[J].Joumal of Food Science and Technology, 2017, 54(5):1239-1247. doi: 10.1007/s13197-017-2546-3 [15] SCHAFLEITNER R, KUMAR S, LIN C Y, et al. The okra (Abelmoschus esculentus) transcriptome as a source for gene sequence information and molecular markers for diversity analysis[J]. Gene, 2013, 517(1):27-36. doi: 10.1016/j.gene.2012.12.098 [16] 王旭, 韩春乐, 周亚楠, 等.黄秋葵查尔酮合成酶基因AeCHS的克隆与表达分析[J].植物遗传资源学报, 2014, 15(3):561-567. http://d.old.wanfangdata.com.cn/Periodical/zwyczyxb201403016 [17] 王炜, 郑伟, 徐晓丹, 等.基于转录组测序的滇山茶花花叶呈色机理分析[J].西北植物学报, 2017, 37(9):1720-1727. doi: 10.7606/j.issn.1000-4025.2017.09.1720 [18] KAYMAZ Y, ODUOR C I, YU H, et al. Comprehensive Transcriptome and Mutational Profiling of Endemic Burkitt Lymphoma Reveals EBV Type-Specific Differences[J].Molecular Cancer Research, 2017, 15(5):563-576. doi: 10.1158/1541-7786.MCR-16-0305 [19] SANGWAN R S, TRIPATHI S, SINGH J, et al. De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism[J]. Gene, 2013, 525(2):58-76. http://cn.bing.com/academic/profile?id=ed20693f5fd9b51d41accb2ff8407af5&encoded=0&v=paper_preview&mkt=zh-cn [20] 张少平, 邱珊莲, 郑开斌, 等.紫色黄秋葵转录组功能基因测序及分析[J].核农学报, 2017, 31(4):643-653. doi: 10.11869/j.issn.100-8551.2017.04.0643 [21] 张少平, 洪建基, 邱珊莲, 等.紫背天葵高通量转录组测序分析[J].园艺学报, 2016, 43(5):935-946. http://www.doc88.com/p-2873120927512.html [22] 贾赵东, 马佩勇, 边小峰, 等.植物花青素合成代谢途径及其分子调控[J].西北植物学报, 2014, 34(7):1496-1506. doi: 10.7606/j.issn.1000-4025.2014.07.1496 [23] CHEN G, LIU H, WEI Q, et al. The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers[J].Journal of Experimental Botany, 2017, 68(3):457-467. http://cn.bing.com/academic/profile?id=2a9b2de66a3d01de4aa7c544324b0ab0&encoded=0&v=paper_preview&mkt=zh-cn [24] CHU Y X, CHEN H R, WU A Z, et al. Expression analysis of dihydroflavonol 4-reductase genes in Petunia hybrida[J]. Genetics and Molecular Research, 2015, 14(2):5010-5021. doi: 10.4238/2015.May.12.4 [25] LI X G, WANG J, YU Z Y. Cloning of an anthocyanidin synthase gene homolog from blackcurrant(Ribes nigrum L.) and its expression at different fruit stages[J]. Genetics & Molecular Research Gmr, 2015, 14(1):2726-2734. http://cn.bing.com/academic/profile?id=42df31a2005637a9a61d021b57a95524&encoded=0&v=paper_preview&mkt=zh-cn [26] MRITA Y, ISHIGURO K, TANAKA Y, et al. Spontaneous mutations of the UDP-glucose:flavonoid 3-O-glucosyltransferase gene confers pale-and dull-colored flowers in the Japanese and common morning glories[J].Planta, 2015, 242(3):575-587. doi: 10.1007/s00425-015-2321-5