Genetic Diversity of Dendrobium Germplasms Accessed by SRAP Markers
-
摘要: 为合理利用石斛兰种质资源,用SRAP分子标记技术对48份石斛兰种质资源的遗传多样性进行分析。结果显示:筛选得到的14对石斛兰SRAP引物共扩增出159个条带,其中多态性条带数为155个,各引物的多态性比率为90.00%~100.00%,多态性信息含量为0.718~0.903,表明石斛兰SRAP的多态性信息含量较为丰富。聚类分析结果发现48个石斛兰品种间的遗传距离在0.15~0.97,在遗传距离为0.83处可将48个石斛兰品种分为7大聚类群,说明供试的石斛兰品种间具有十分丰富的遗传多样性。Abstract: SRAP molecular markers were used to access the genetic diversity of 48 Dendrobium germplasms. Using 14 pairs of selected primers, 159 bands were amplified. Of the bands, 155 were polymorphic. The polymorphism rate was 90%-100% per primer, and the information content in the markers ranged abundantly from 0.718 to 0.903. Cluster analysis showed the genetic distances among the 48 cultivars to be 0.15-0.97. At the distance of 0.83, the germplasms could be classified into 7 groups. The results showed a rich genetic diversity among the germplasms.
-
Key words:
- Dendrobium /
- SRAP /
- polymorphism /
- genetic diversity
-
表 1 供试材料
Table 1. Materials tested
编号 品种名 1 鼓槌石斛 2 流苏石斛 3 铁皮石斛 4 铜皮石斛 5 金钗石斛 6 秋石斛D46 7 晶帽石斛 8 蜂腰石斛 9 玫瑰石斛 10 球花石斛 11 长苏石斛 12 秋石斛D2015129 13 肿节石斛 14 黄喉石斛 15 黄橙石斛 16 曲轴石斛 17 檀香石斛 18 血喉石斛 19 麝香石斛 20 本斯石斛 21 叉唇石斛 22 红蜻蜓石斛 23 金果石斛 24 红灯笼石斛 25 黄贝壳石斛 26 秋石斛D2015117 27 密花石斛 28 扭瓣石斛 29 剑叶石斛 30 亮叶石斛 31 报春石斛 32 董黑毛石斛 33 澳洲石斛 34 兜唇石斛 35 重唇石斛 36 秋石斛D2015123 37 霍山石斛 38 秋石斛-三亚阳光 39 秋石斛-水晶 40 秋石斛-出水芙蓉 41 秋石斛-画眉 42 秋石斛-樱桃红 43 秋石斛-红粉佳人 44 秋石斛D2015114 45 秋石斛D2015121 46 秋石斛-TretesMoon 47 秋石斛D2015127 48 秋石斛D2015128 表 2 石斛兰SRAP标记多态性分析
Table 2. Information on SRAP markers in Dendrobium
引物名 引物序列 总条带 多态性条带 多态性比率/% 多态性信息含量 Me1+Em2 5′-TGAGTCCAAACCGGATA-3′;5′-GACTGCGTACGAATTTGC-3′ 14 14 100.00 0.900 Me1+Em3 5′-TGAGTCCAAACCGGATA-3′;5′-GACTGCGTACGAATTGAC-3′ 9 9 100.00 0.829 Me1+Em8 5′-TGAGTCCAAACCGGATA-3′;5′-GACTGCGTACGAATTCTG-3′ 15 15 100.00 0.884 Me2+Em1 5′-TGAGTCCAAACCGGAGC-3′;5′-GACTGCGTACGAATTAAT-3′ 9 9 100.00 0.840 Me2+Em10 5′-TGAGTCCAAACCGGAGC-3′;5′-GACTGCGTACGAATTTAG-3′ 12 12 100.00 0.880 Me3+Em4 5′-TGAGTCCAAACCGGAAT-3′;5′-GACTGCGTACGAATTTGA-3′ 13 13 100.00 0.900 Me3+Em6 5′-TGAGTCCAAACCGGAAT-3′;5′-GACTGCGTACGAATTGCA-3′ 7 7 100.00 0.779 Me4+Em2 5′-TGAGTCCAAACCGGACC-3′;5′-GACTGCGTACGAATTTGC-3′ 13 12 92.31 0.718 Me6+Em6 5′-TGAGTCCAAACCGGTAA-3′;5′-GACTGCGTACGAATTGCA-3′ 11 11 100.00 0.868 Me6+Em10 5′-TGAGTCCAAACCGGTAA-3′;5′-GACTGCGTACGAATTTAG-3′ 12 12 100.00 0.903 Me7+Em2 5′-TGAGTCCAAACCGGTCC-3′;5′-GACTGCGTACGAATTTGC-3′ 10 9 90.00 0.730 Me8+Em5 5′-TGAGTCCAAACCGGTGC-3′;5′-GACTGCGTACGAATTAAC-3′ 11 11 100.00 0.839 Me10+Em2 5′-TGGGGACAACCCGGCTT-3′;5′-GACTGCGTACGAATTTGC-3′ 12 11 91.67 0.798 Me10+Em8 5′-TGGGGACAACCCGGCTT-3′;5′-GACTGCGTACGAATTCTG-3′ 11 10 90.91 0.724 -
[1] 吴高杰. 石斛兰离体培养条件优化及其离体培养物的microRNA研究[D]. 福州: 福建农林大学, 2012. http://cdmd.cnki.com.cn/article/cdmd-10389-1012425749.htm [2] 陈慧玲, 刘宗坤, 杨彦伶, 等.基于层次分析法的药用石斛种质资源评价[J].西南林业大学学报, 2017, 37(1):82-87. http://www.cnki.com.cn/Article/CJFDTotal-LCZY201505005.htm [3] 李杰, 章金辉, 朱根发, 等.石斛属植物种质资源鉴定及指纹图谱应用研究进展[J].中国农学通报, 2013, 29(16):63-68. doi: 10.11924/j.issn.1000-6850.2012-3827 [4] 林榕燕, 钟淮钦, 黄敏玲, 等.文心兰EST-SSR标记的开发及其在遗传多样性分析中的应用[J].分子植物育种, 2016, 14(11):3113-3119. http://cdmd.cnki.com.cn/Article/CDMD-10435-1012251533.htm [5] 王志清, 刘继永, 李昌禹, 等.利用ISSR和SRAP标记分析细辛资源遗传多样性与亲缘关系[J].植物遗传资源学报, 2015, 16(5):1035-1044. http://www.cqvip.com/QK/84467A/201505/666085586.html [6] 唐源江, 曹雯静, 吴坤林.基于SRAP标记的国兰种质资源遗传多样性分析及分子身份证构建[J].中国农业科学, 2015, 48(9):1795-1806. doi: 10.3864/j.issn.0578-1752.2015.09.13 [7] 钟淮钦, 林榕燕, 黄敏玲, 等.杂交兰种质资源遗传多样性的SRAP分析[J].福建农业学报, 2016, 31(11):1193-1197. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnxtb200804026 [8] 刘中华, 林志坚, 李华伟, 等.甘薯蔓割病抗性相关SRAP标记的获得[J].福建农业学报, 2017, 32(6):639-644. http://www.cnki.com.cn/Article/CJFDTotal-ZWYC201502012.htm [9] MOKHTARI N, RAHIMMALEK M, TALEBI MAJID, et al. Assessment of genetic diversity among and within Carthamus species using sequence-related amplified polymorphism (SRAP) markers[J]. Plant Systematics and Evolution, 2013, 299(7):1285-1294. doi: 10.1007/s00606-013-0796-8 [10] FENG S J, TANG T X, LIU Z S, et al. Genetic diversity and relationships of wild and cultivated Zanthoxylum germplasms based on sequence-related amplified polymorphism (SRAP) markers[J]. Genetic Resources and Crop Evolution, 2015, 62(8):1193-1204. doi: 10.1007/s10722-015-0222-x [11] ZHANG X J, CHEN H Y, CHANNA S A, et al. Genetic diversity in Chinese and exotic Brassica rapa L. accessions revealed by SSR and SRAP markers[J]. Brazilian Journal of Botany, 2017, 40(4):973-982. doi: 10.1007/s40415-017-0392-1 [12] 李杰, 王再花.人工栽培铁皮石斛与其相似种的SRAP分子标记分析[J].中国农学通报, 2016, 32(25):79-83. doi: 10.11924/j.issn.1000-6850.casb16010087 [13] 任羽, 潘丙成, 陆顺教, 等. 60Co-γ辐射石斛兰组培苗的SRAP分析[J].中国农学通报, 2016, 32(31):85-89. doi: 10.11924/j.issn.1000-6850.casb16070066 [14] DING G, ZHANG D Z, DING X Y, et al. VGenetic variation and conservation of the endangered Chinese endemic herb Dendrobium officinale based on SRAP analysis[J].Plant Systematics and Evolution, 2008, 276(3-4):149-156. doi: 10.1007/s00606-008-0068-1 [15] POREBSKI S, BAILEY G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J].Plant Molecular Biology Reporter, 1997, 15(1):8-15. doi: 10.1007/BF02772108 [16] BUDAK H, SHEARMAN R C, PARMAKSIZ I, et al. Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers[J]. Theoretical and Applied Genetics, 2004, 108(2):328-334. doi: 10.1007/s00122-003-1428-4 [17] 徐蕾, 刘莉, 彭少丹, 等.利用SSR标记研究铁皮石斛的遗传多样性[J].分子植物育种, 2015, 13(7):1616-1622. http://www.cqvip.com/QK/94499A/201604/669861520.html [18] 宋爽, 周洋帆, 刘正杰, 等.利用ISSR和AFLP标记分析石斛种质资源的遗传多样性[J].云南农业大学学报(自然科学版), 2016, 31(4):688-695. http://www.cqvip.com/QK/94499A/201604/669861520.html [19] 张杨, 陈志宽, 赖育菠, 等.应用RAPD分子标记技术探讨3种石斛属植物的种间关系[J].亚热带植物科学, 2014, 43(2):123-126. http://www.cqvip.com/QK/97784X/2005001/11729055.html [20] 周丽, 王苑, 王兴益, 等.黔西南州铁皮石斛资源特性及SRAP标记[J].基因组学与应用生物学, 2015, 34(9):1950-1956. http://cdmd.cnki.com.cn/Article/CDMD-10341-1011026946.htm [21] 樊洪泓, 李廷春, 邱婧, 等.药用石斛遗传多样性的SRAP标记研究[J].中国中药杂志, 2008, 33(1):6-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgzyzz200801002