Individual and In-combination Toxicities of Six Fungicides for Controlling Fusarium oxysporum on Cymbidium ensifolium
-
摘要: 为筛选出对建兰茎腐病防效好的增效混剂,室内测定6种杀菌剂对建兰茎腐病原菌尖孢镰刀菌的毒力及其联合作用。结果表明:6种杀菌剂对建兰茎腐病原菌尖孢镰刀菌均有不同程度的抑制作用,抑制中浓度EC50的由小到大依次为:咪鲜胺、苯醚甲环唑、多菌灵和肟菌酯、噁霉灵和代森锰锌;设定的4组混剂配方,苯醚甲环唑+多菌灵、多菌灵+肟菌酯混配表现为增效作用,苯醚甲环唑+多菌灵混配的最佳有效成分质量配比为5:5,共毒系数为378.63;多菌灵+肟菌酯混配的最佳配比则为8:2,共毒系数为247.80。可见,苯醚甲环唑+多菌灵和多菌灵+肟菌酯合理比例混配能较好防控建兰茎腐病的发生为害。Abstract: To select appropriate agents for effective controlling the stem rot disease on Cymbidium ensifolium, toxicities of 6 fungicides, either individually or in combination, were tested in laboratory. All 6 fungicides showed varying degrees of inhibition on Fusarium oxysporum, with EC50 that ranked in the order of prochloraz>difenoconazole>carbendazim or trifloxystrobin>hymexazol or mancozeb. In combination, a synergism between difenoconazole and carbendazim, as well as between trifloxystrobin and carbendazim, was observed. The optimum ratio for the difenoconazole/carbendazim combination was 5/5 with a co-toxicity coefficient of 378.63, while that for trifloxystrobin/carbendazim, 8/2 with a coefficient of 247.80.
-
Key words:
- Cymbidium ensifolium: stem rot /
- toxicity test /
- co-toxicity /
-
表 1 6种杀菌剂对尖孢镰刀菌的毒力
Table 1. Toxicities of 6 fungicides against C. ensifolium
供试药剂 毒力回归方程 相关系数 EC50/(mg·L-1) 95%置信区间/(mg·L-1) 多菌灵 y=3.1621+2.0793x 0.8673 7.6546 1.9728~29.6998 苯醚甲环唑 y=5.2662+0.6016x 0.8794 0.3610 0.0931~1.3990 噁霉灵 y=2.4238+1.8211x 0.9468 25.9811 11.9233~56.6133 咪鲜胺 y=6.3078+1.0895x 0.9856 0.0630 0.0442~0.0900 代森锰锌 y=3.4303+0.7817x 0.9538 101.9616 28.6445~362.2559 肟菌酯 y=3.4779+1.6289x 0.9061 8.5982 2.7844~26.5505 表 2 咪鲜胺+苯醚甲环唑对尖孢镰刀菌的联合作用
Table 2. Co-toxicity of prochloraz and difenoconazole against C. ensifolium
混剂配比 毒力回归方程 相关系数 EC50/(mg·L-1) 95%置信区间/(mg·L-1) 共毒系数CTC 评价 9:1 y=5.7628+0.9985x 0.8668 0.1722 0.0345~0.8596 39.88 拮抗 8:2 y=6.3052+1.7309x 0.9681 0.1762 0.1072~0.2896 42.83 拮抗 7:3 y=5.8905+1.5850x 0.9645 0.2743 0.1585~0.4745 30.53 拮抗 6:4 y=5.6436+1.3335x 0.9569 0.3291 0.1756~0.6167 28.58 拮抗 5:5 y=6.0415+1.2554x 0.9758 0.1480 0.0961~0.2280 72.49 拮抗 4:6 y=5.5532+1.0528x 0.9544 0.2982 0.1580~0.5628 41.86 拮抗 3:7 y=5.4327+1.1510x 0.9909 0.4208 0.3128~0.5661 35.46 拮抗 2:8 y=5.5426+2.5970x 0.9773 0.6181 0.3654~1.0456 30.01 拮抗 1:9 y=5.1766+0.5476x 0.9933 0.4759 0.3657~0.6194 51.50 拮抗 表 3 咪鲜胺+肟菌酯对尖孢镰刀菌的联合作用
Table 3. Co-toxicity of prochloraz and trifloxystrobin against C. ensifolium
混剂配比 毒力回归方程 相关系数 EC50/(mg·L-1) 95%置信区间/(mg·L-1) 共毒系数CTC 评价 9:1 y=5.6791+0.7874x 0.9713 0.1372 0.0510~0.3693 50.98 拮抗 8:2 y=5.6775+0.7953x 0.9651 0.1407 0.0473~0.4182 55.87 拮抗 7:3 y=5.5476+0.8928x 0.9783 0.2436 0.1145~0.5181 36.83 拮抗 6:4 y=5.6313+0.8430x 0.9592 0.1783 0.0578~0.5495 58.61 拮抗 5:5 y=5.5882+0.8750x 0.9670 0.2127 0.0808~0.5597 58.82 拮抗 4:6 y=5.5431+0.9054x 0.9748 0.2513 0.1116~0.5655 62.02 拮抗 3:7 y=5.4248+0.9872x 0.9789 0.3713 0.1880~0.7333 55.64 拮抗 2:8 y=5.3892+1.0230x 0.9794 0.4165 0.2162~0.8023 73.55 拮抗 1:9 y=4.8814+1.3942x 0.9904 1.2164 0.8383~1.7650 48.69 拮抗 表 4 苯醚甲环唑+多菌灵对尖孢镰刀菌的联合作用
Table 4. Co-toxicity of difenoconazole and carbendazim against C. ensifolium
混剂配比 毒力回归方程 相关系数 EC50/(mg·L-1) 95%置信区间/(mg·L-1) 共毒系数CTC 评价 9:1 y=5.1309+0.3829x 0.8742 0.4550 0.1448~1.4300 87.70 相加 8:2 y=5.1225+0.3047x 0.8916 0.3963 0.0775~2.0261 112.54 相加 7:3 y=5.3458+0.5215x 0.9627 0.2172 0.1092~0.4321 232.73 增效 6:4 y=5.2259+0.4362x 0.9701 0.3035 0.1732~0.5318 192.20 增效 5:5 y=5.2160+0.2920x 0.8899 0.1821 0.0488~0.6799 378.63 增效 4:6 y=5.1457+0.4734x 0.9494 0.4922 0.2059~0.9656 171.25 增效 3:7 y=5.0962+0.5622x 0.8377 0.6744 0.1861~2.444 160.74 增效 2:8 y=4.9521+0.5400x 0.9031 1.2268 0.4669~3.2236 123.78 增效 1:9 y=4.8573+0.5491x 0.9258 1.8190 0.7451~4.4405 139.32 增效 表 5 多菌灵+肟菌酯对尖孢镰刀菌的联合作用
Table 5. Co-toxicity of carbendazim and trifloxystrobin against C. ensifolium
混剂配比 毒力回归方程 相关系数 EC50/(mg·L-1) 95%置信区间/(mg·L-1) 共毒系数CTC 评价 9:1 y=4.6042+0.7629x 0.9874 3.3020 2.6243~4.1546 235.10 增效 8:2 y=4.6520+0.6931x 0.9873 3.1779 2.5165~4.0132 247.80 增效 7:3 y=3.9511+1.1412x 0.9560 8.2999 5.5194~12.4811 96.26 相加 6:4 y=3.8428+1.2356x 0.9939 8.6409 7.4430~10.0315 93.83 相加 5:5 y=4.0791+1.1333x 0.9890 6.4949 5.3656~7.8620 126.71 增效 4:6 y=4.0416+1.2272x 0.9718 6.0392 4.4338~8.2259 138.35 增效 3:7 y=4.3269+1.0755x 0.8507 4.2248 1.8598~9.5974 200.83 增效 2:8 y=1.1826+3.6078x 0.8766 11.4309 5.0835~25.7039 75.39 拮抗 1:9 y=3.1347+1.5378x 0.9757 16.3277 11.1083~23.9995 53.63 拮抗 -
[1] 许东生.中国建兰名品赏培[M].北京:中国林业出版社, 2009. [2] YAO J A, HUANG P, LAN C Z, et al. Stem rot on Cymbidium ensifolium(Orchidaceae) caused by Fusarium oxysporum in China[J/OL]. Canadian Journal of Plant Pathology, (2017-12-20)[2018-01-08]. https://doi.org/10.1080/07060661.2017.1411976. https://www.researchgate.net/publication/321660348_Stem_rot_on_Cymbidium_ensifolium_Orchidaceae_caused_by_Fusarium_oxysporum_in_China [3] 姚锦爱, 黄鹏, 陈峰, 等.建兰茎腐病原菌尖孢镰刀菌的生物学特性研究[J].福建农业学报, 2018, 33(2):190-194. http://www.cnki.com.cn/Article/CJFDTotal-FJNX201802015.htm [4] 中华人民共和国农业部. NY/T 1156. 2-2006农药室内生物测定试验准则杀菌剂第2部分: 抑制病原真菌菌丝生长试验平皿法[DB/OL]. (2012-05-23)[2018-01-08]. http://down.foodmate.net/standard/sort/5/10753.html. [5] 许志刚.普通植物病理学:第4版[M].北京:中国农业出版社, 2003:23-25. [6] 施祖荣, 张云霞, 黄江华, 等. 广东主要兰花真菌病害鉴定及墨兰茎腐病防治农药筛选[C]//中国植物病理学会2012学术年会, 2012: 36. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGVS201207001032.htm [7] 徐波, 曾宋君, 宋凤鸣, 等.兜兰茎腐病病原鉴定和生物学特性及室内药剂筛选研究[J].广东农业科学, 2014, 41(14):70-75. doi: 10.3969/j.issn.1004-874X.2014.14.016 [8] 洪汗福. 杂交兰茎腐病的防治技术研究[D]. 广州: 华南农业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10564-1016923263.htm [9] 董代文, 郑永忠, 郭建.浅析农药混配与抗药性治理对策[J].植物医生, 2000(4):6-8. http://mall.cnki.net/magazine/Article/ZWYS200004008.htm [10] 张玉粉. 伏毛铁棒锤生物碱对化学农药的增效作用及复配制剂研制[D]. 银川: 宁夏大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10749-1014226688.htm [11] 周卫东.浅议化学防治与植物保护[J].徐州工程学院学报, 2005, 20(1):108-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnyxx-sby201410049