Effects of Ca(NO3)2 on Rooting and Leaf Antioxidase Activities of Cuttings for Propagating Passiflora edulis×P. edulis f. flavicarpa
-
摘要: 以百香果枝条作插穗,采用不同质量浓度的Ca(NO3)2处理,研究Ca(NO3)2对插穗生根及其叶片过氧化物酶(POD)、超氧化物歧化酶(SOD)、过氧化氢化酶(CAT)、抗坏血酸过氧化物酶(APX)活性和膜质过氧化物产物丙二醛(MDA)含量的影响。试验结果表明,当质量浓度为50 mg·L-1 Ca(NO3)2处理的生根数测得值为26.8条,根鲜样质量测得值为0.9 g·plant-1,根系活力测得值为220.56 μg·h-1·g-1FW,与对照相比达到差异显著;质量浓度为50 mg·L-1 Ca(NO3)2处理的POD、SOD、CAT和APX活性测得值均比其他处理显著增加,且MDA含量测得值均比其他处理显著减少。因此,适当质量浓度的Ca(NO3)2处理可提高POD、SOD、CAT和APX活性,降低MDA含量,从而提高插穗对逆境的抵抗及愈合能力,促进插穗生根。Abstract: Effects of Ca(NO3)2 in varied concentrations on the rooting and activities of peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and malondialdehyde (MDA) in leaves of Passiflora edulis P. edulis f. flavicarpa cuttings for the plant propagation were studied. The results showed that the application of 50 mg Ca(NO3)2/L significantly increased the count, fresh mass, and vitality of the roots per plant as compared to control. The activities of POD, SOD, CAT and APX in the leaves were also enhanced significantly, while MDA significantly reduced. It suggested that Ca(NO3)2 treatment at a proper dosage could promote rooting of the cuttings as a result from the increased antioxidant enzyme activities and decreased membrane lipid peroxidation in the leaves of the seedlings.
-
Key words:
- Passiflora edulis P. edulis f. flavicarpa /
- Ca(NO3)2 /
- cutting /
- antioxidases /
- enzyme activity
-
表 1 Ca(NO3)2对插穗生根数、生根率、根鲜样质量、根系活力的影响
Table 1. Effects of Ca(NO3)2 on number, rooting rate, fresh weight and vitality of roots of cuttings
Ca(NO3)2
/(mg·L-1)株根数
/条生根数量
/条插穗数量
/条生根率
/%根鲜样质量
/(g·plant-1)根系活力
/(μg·h-1·g-1FW)0(CK) 15.1±1.2 d 22.3 30 74.3±2.0 e 0.70±0.03 e 170.32±0.02 e 10 17.5±1.2 c 23.7 30 79.0±2.2 d 0.76±0.04 d 195.56±0.02 d 30 20.5±1.4 b 25.7 30 85.7±2.6 c 0.81±0.01 c 211.02±0.03 c 50 26.8±2.3 a 29.7 30 99.0±3.5 a 0.90±0.05 a 220.56±0.06 a 70 22.4±2.0 b 27.3 30 91.0±3.1 b 0.88±0.03 b 215.10±0.04 b 90 18.7±1.5 c 26.0 30 86.7±2.7 c 0.86±0.02 b 214.35±0.03 bc 注:表中数据为30 d时测的平均值。同列不同字母表示在5%水平上存在差异性显著。 表 2 Ca(NO3)2处理对百香果插穗叶片POD活性的影响
Table 2. Effect of Ca(NO3)2 treatments on POD activity in leaves of cuttings
[单位/(OD470·min-1·g-1)] Ca(NO3)2/(mg·L-1) 0 d 1 d 3 d 6 d 9 d 12 d 15 d 0(CK) 0.34±0.002 d 0.4±0.001 e 0.48±0.003 e 0.52±0.005 e 0.57±0.002 e 0.58±0.006 e 0.49±0.004 e 10 0.43±0.003 b 0.46±0.003 d 0.5±0.004 d 0.6±0.001 cd 0.65±0.003 d 0.69±0.001 d 0.56±0.002 d 30 0.44±0.001 b 0.5±0.002 c 0.56±0.004 c 0.68±0.006 b 0.76±0.005 b 0.82±0.003 bc 0.72±0.001 b 50 0.50±0.005 a 0.58±0.003 a 0.65±0.004 a 0.72±0.001 a 0.88±0.002 a 0.91±0.004 a 0.84±0.003 a 70 0.41±0.008 b 0.52±0.005 b 0.59±0.005 b 0.68±0.002 b 0.79±0.004 b 0.85±0.003 b 0.74±0.003 b 90 0.39±0.004 bc 0.48±0.006 cd 0.55±0.002 c 0.62±0.003 c 0.73±0.003 bc 0.79±0.002 b 0.66±0.002 c 注:表中数据为平均值,同列数据后不同字母表示在5%水平上存在差异性显著。表 3~6同。 表 3 Ca(NO3)2处理对百香果插穗叶片SOD活性的影响
Table 3. Effect of Ca(NO3)2 treatments on SOD activity in leaves of cuttings
[单位/(U·g-1)] Ca(NO3)2/(mg·L-1) 0 d 1 d 3 d 6 d 9 d 12 d 15 d 0(CK) 23±4.33 d 27±3.43 ef 32±2.36 e 41±6.13 e 47±4.96 ef 40 ±3.87 e 38±5.40 d 10 35±12.33 c 40±10.13 d 47±8.75 d 54±5.68 d 68±12.52 d 57±11.02 d 41±9.83 c 30 43±9.00 b 55±7.32 b 68±4.58 b 79±6.98 b 81±8.23 b 65±6.80 c 53±5.09 b 50 56±9.33 a 65±6.75 a 74±10.24 a 88±4.39 a 95±7.90 a 87±5.03 a 62±4.66 a 70 40±2.33 b 48±1.39 c 61±6.58 c 66±1.65 c 78±3.56 c 71±6.66 b 43±6.70 c 90 26±9.33 d 30±8.61 e 35±5.62 e 41±9.01 e 49±7.62 e 34±5.93 f 28±8.45 e 表 4 Ca(NO3)2处理对百香果插穗叶片CAT活性的影响
Table 4. Effect of Ca(NO3)2 treatments on CAT activity in leaves of cuttings
[单位/(U·min-1·g-1)] Ca(NO3)2
/(mg·L-1)0 d 1 d 3 d 6 d 9 d 12 d 15 d 0(CK) 2.78±0.044 d 2.95±0.062 d 3.28±0.038 d 3.64±0.065 d 4.02±0.028 e 3.68±0.032 d 3.7±0.030 d 10 3.72±0.006 c 3.76±0.008 c 3.78±0.008 c 4.03±0.002 c 4.35±0.006 d 4.21±0.003 c 4.02±0.01 c 30 4.17±0.002 b 4.35±0.004 b 4.51±0.005 b 4.65±0.021 b 4.89±0.004 b 4.63±0.015 b 4.6±0.023 b 50 5.49±0.118 a 5.53±0.143 a 5.74±0.125 a 6.4±0.152 a 6.82±0.143 a 6.35±0.190 a 6.29±0.120 a 70 3.67±0.060 c 3.68±0.054 c 3.69±0.036 c 4.01±0.010 c 4.52±0.035 bc 4.43±0.059 b 4.2±0.071 bc 90 2.74±0.017 d 2.74±0.020 d 2.75±0.040 e 2.76±0.032 e 2.79±0.022 f 2.75±0.020 e 2.74±0.054 e 表 5 Ca(NO3)2处理对百香果插穗叶片APX活性的影响
Table 5. Effect of Ca(NO3)2 treatments on APX activity in leaves of cuttings
[单位/(U·min-1·g-1)] Ca(NO3)2
/(mg·L-1)0 d 1 d 3 d 6 d 9 d 12 d 15 d 0(CK) 1.33±0.002 c 1.36±0.005 e 1.37±0.003 f 1.38±0.009 f 1.35±0.012 e 1.34±0.012 e 1.32±0.004 e 10 1.49±0.009 b 1.59±0.006 c 1.55±0.008 d 1.87±0.005 d 1.5±0.007 c 1.45±0.004 d 1.42±0.006c 30 1.54±0.002 b 1.86±0.004 b 1.98±0.004 b 2.12±0.001 c 1.86±0.006 b 1.85±0.011 b 1.46±0.001 bc 50 2.01±0.011 a 2.12±0.008 a 2.43±0.012 a 2.58±0.006 a 2.38±0.010 a 2.3±0.017 a 2.22±0.005 a 70 1.56±0.004 b 1.62±0.002 c 1.79±0.006 c 2.3±0.008 b 1.88±0.005 b 1.64±0.002 c 1.5±0.003 b 90 1.45±0.005 bc 1.43±0.003 d 1.44±0.002 e 1.46±0.001e 1.43±0.011 d 1.42±0.013 d 1.39±0.003 d 表 6 Ca(NO3)2处理对插穗叶片MDA活性的影响
Table 6. Effect of Ca(NO3)2 treatments on MDA activity in leaves of cuttings
[单位/(nmol·min-1·g-1)] Ca(NO3)2
/(mg·L-1)0 d 1 d 3 d 6 d 9 d 12 d 15 d 0(CK) 33±9.33 a 35±11.29 38±10.25 40 42 45 48 10 26±6.23 b 30±5.83 a 35±4.98 a 38±6.32 a 39±6.03 a 41±8.15 a 43±4.86 a 30 19±2.21 c 26±3.12 b 30±2.06 c 37±3.78 ab 38±2.55 b 38±3.87 b 39±4.45 bc 50 11±1.56 e 18±1.50 d 28±1.05 d 36±1.94 b 37±1.65 bc 35±1.54 d 36±1.05 d 70 16±6.58 d 21±7.65 c 28±6.91 d 33±9.21 c 33±5.31 d 37±8.53 c 40±8.45 b 90 19±5.26 c 25±5.18 b 34±5.47 ab 36±5.82 b 38±4.69 b 39±7.12 ab 43±4.05 a -
[1] 陈洪德.西番莲扦插育苗及其栽培园土壤改良试验[J].亚热带农业研究, 2014, 10(1):31-34. http://www.cqvip.com/QK/96019X/201401/49269958.html [2] 金立敏, 袁建明, 吕文涛, 等.不同基质对西番莲插穗生根的影响[J].湖南农业科学, 2010(17):127-129. doi: 10.3969/j.issn.1006-060X.2010.17.041 [3] 杨冬业, 张丽珍.百香果的扦插种植研究[J].北方园艺, 2015(9):38-40. http://www.oalib.com/paper/4599068 [4] 郑桂珍, 关军锋, 李广敏.渗透胁迫下小麦幼苗CaM含量变化及其含水量的关系研究[J].中国生态农业学报, 2006, 14(2):662-668. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stnyyj200602023 [5] 李连明, 王学臣.水分亏缺下细胞延伸生长与细胞膨压和细胞壁特性的关系[J].植物生理学通讯, 1998, 34(3):161-167. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-EGYP200407001149.htm [6] 汪结明, 李瑞雪, 魏万亮.氯化钙处理对垂枝樱花扦插生根及抗氧化酶活性的影响[J].热带作物学报, 2011, 32(4):694-697. http://www.cqvip.com/QK/95551X/201104/38165903.html [7] GIANNOPOLITIS C N, RIES S K.Purification and quantitative relationship with water-soluble protein in seeding[J].Plant Physiol, 1997, 59:315-318. [8] 张志良, 瞿伟箐.植物生理学试验指导[M].第三版, 北京:高等教育出版社, 2003:123-124, 188-190. [9] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbatespecific peroxidase in spinach chloroplaste[J]. Plant and Cell Physiology, 1981(22):867-880. [10] 王学奎.植物生理生化试验原理和技术[M].北京:高等教育出版, 2006:118-119. [11] 王丽萍, 任良玉, 王冉, 等.钙对黄瓜幼苗生长及抗氧化系统的影响[J].河北农业大学学报, 2004, 7(1):34-37. http://www.cnki.com.cn/Article/CJFDTOTAL-XBNX200704039.htm [12] 杨根平, 高向阳, 荆家海.水分胁迫下钙对大豆叶片光合作用改善效应[J].作物学报, 1995, 21(6):711-716. http://wuxizazhi.cnki.net/Sub/LSZW/a/XBZW199506007.html [13] ABDEL B R. Calcium channels and menbrane disorders induced by drought stress in Vicia faba plants supplemented with calcium[J]. Acta Physiol Plant, 1998, 20:149-153. doi: 10.1007/s11738-998-0006-4 [14] 郑成淑, 王文莉, 孙宪芝, 等.硝酸钙处理对菊花扦插生根及抗氧化酶活性的影响[J].园艺学报, 2008, 35(2):263-268. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yyxb200802017 [15] 张立信, 李生秀.氮、钾、甜菜碱对水分胁迫下夏玉米叶片膜质过氧化和保护酶活性的影响[J].作物学报, 2007, 33(3):482-490. http://www.cnki.com.cn/Article/CJFDTotal-YMKX201206025.htm [16] 蒋明义, 荆家海, 王绍唐.渗透胁迫对水稻幼苗膜脂过氧化及体内保护系统的影响[J].植物生理学报, 1994, 36(1):43-49. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI199101011.htm [17] 张海平, 单世华, 蔡来龙, 等.钙对花生植株生长和叶片活性氧防御系统的影响[J].中国油料作物学报, 2004, 26(3):33-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgylzwxb200403008 [18] 杨凤娟, 王秀峰, 魏珉.NO3-胁迫下K+、Ca2+对黄瓜幼苗膜质过氧化及活性氧清除酶系统的影响[J].农业工程学报, 2005(21):155-158. http://lprapp14.fao.org/XML_Output/2010/CN/CN0912.xml