Effects of Alternanthera philoxeroides Grown in Different CO2 Environment on the Reproductive Ability of Agasicles hygyophila
-
摘要: 为探究CO2含量升高对莲草直胸跳甲种群生长发育和种群繁殖能力的间接影响,建立了取食不同CO2含量(420、750 μL·L-1)条件下生长的空心莲子草的莲草直胸跳甲F5代种群两性生命表。结果表明,随着CO2含量的增加,取食相应环境中生长的空心莲子草的莲草直胸跳甲的发育历期缩短、产卵期延长、产卵量增加,说明CO2含量增加间接有利于莲草直胸跳甲的繁殖力。而同CO2含量(420 μL·L-1)条件下,F5代的产卵期和产卵量均少于F1代,发育历期延长,说明实验室条件下随着世代积累,莲草直胸跳甲种群繁殖力下降。420 μL·L-1 CO2含量下,莲草直胸跳甲F5代种群的净增值率(R0)和内禀增长率(r)低于F1代;而750 μL·L-1 F5代莲草直胸跳甲种群的净增值率和内禀增长率低于420 μL·L-1 CO2含量的F1代,但高于420 μL·L-1 CO2含量的F5代;周限增长率(λ)、平均世代周期(T)均无显著差异;高含量可育雌雄比率高于低含量且差异显著。上述结果表明,取食高CO2含量环境下生长的空心莲子草增加了莲草直胸跳甲F5代种群的繁殖能力,间接对莲草直胸跳甲的生长发育产生了积极影响。Abstract: To understand the indirect effects of elevated CO2 concentrations on the growth, development and population reproduction of A. hygrophila, Age-stage two-sex life table of A. hygrophila feeding on A. philoxeroides grown in different CO2 concentrations were constructed. The results showed that, as the CO2 concentration increasing, the development duration was shortened, the oviposition period was lengthened, and the fecundity increased of A. hygrophila feeding on A. philoxeroides grown in correspond CO2 environment. So it's indirectly beneficial for the fecundity of A. hygrophila. In the same CO2 concentration (420 μL·L-1) condition, the oviposition period and the fecundity of F5 were less than those of F1, but the development duration was lengthened. This indicated that the fecundity of A. hygrophila was declined with generation development under laboratory conditions. In the 420 μL·L-1 CO2 concentration condition, the net reproductive rate (R0), intrinsic rate of increase (r) of F5 were less than F1, and the R0 and r of F5 in 750 μL·L-1 CO2 concentration condition were also less than F1, but higher than that of F5 in 420 μL·L-1 CO2 concentration. The finite rate of increase (λ) and mean generation time (T) had no significant differences. The fertile female ratio at higher concentration was significantly higher than those at lower concentration. These results indicated that the reproductive of A. hygrophila feeding on A. philoxeroides grown in elevated CO2 concentrations may be enhanced and the elevated CO2 concentrations plays a positive effect on the growth and the development of A. hygrophila population.
-
Key words:
- A. hygrophila /
- CO2 /
- Growth, Development /
- Two-sex life table
-
表 1 不同CO2含量对莲草直胸跳甲生长发育及繁殖力的间接影响
Table 1. Indirect impaction of different CO2 concentrations on growth development and fecundity of A. hygrophila
参数 CO2含量 420 μL·L-1 F1 420 μL·L-1 F5 750 μL·L-1 F5 n Mean ± SE n Mean ± SE n Mean ± SE 卵/d 81 4.33±0.05 c 77 5.66±0.05 a 54 5.06±0.03 b 1龄/d 72 3.53±0.08 a 74 3.20±0.08 b 48 3.19±0.06 b 2龄/d 66 3.09±0.14 a 72 1.86±0.07 c 44 2.23±0.15 b 3龄/d 47 4.38±0.21 b 59 3.93±0.36 b 35 5.40±0.15 a 蛹/d 28 8.39±0.19 b 41 10.83±0.48 a 18 7.78±0.19 c 卵~蛹/d 28 23.14±0.36 b 41 25.63±0.69 a 18 23.33±0.14 b 雌成虫寿命/d 17 11.47±1.39 b 12 10.33±0.51 b 8 17.25±1.31 a 雄成虫寿命/d 11 17.73±1.74 a 29 17.97±1.97 a 10 15.90±2.25 a 总虫/d 81 37.07±1.12 b 77 41.37±1.56 a 54 39.83±1.32 b 雌虫/d 17 35.41±1.50 b 12 35.17±1.63 b 8 40.38±1.35 a 雄虫/d 11 39.64±1.45 a 29 43.93±1.93 a 10 39.4±2.19 a 成虫产卵前期/d 13 4.77±0.28 a 10 3.4±0.43 b 8 4.38±0.26 b 总产卵前期/d 13 28.77±0.74 a 10 27.9±1.09 a 8 27.5±0.27 a 产卵期/d 13 6.31±0.79 b 10 4.4±0.54 b 8 8.00±0.73 a 产卵量/(粒·雌-1) 17 149.82±32.29 b 12 109.17±22.40 b 8 177.00±18.13 a 注:同行数据后不同小写字母表示经Bootstrap test差异达显著水平(P < 0.05),表 2同。 表 2 不同CO2含量对莲草直胸跳甲种群参数的间接影响
Table 2. Indirect impactions of different CO2 concentrations on population parameters of A.hygrophila
种群参数 CO2含量 420 μL·L-1 F1 420 μL·L-1 F5 750 μL·L-1 F5 净增值率(R0, offspring) 3144 ± 9.491 a 17.01 ±5.642 a 26.22±8.887 a 内禀增长率(r,d-1) 0.11 ± 0.011 a 0.09±0.012 a 0.10±0.012 a 周限增长率(λ,d-1) 111 ± 0.012 a 110±0.013 a 111 ± 0.013 a 平均世代周期(T,d-1) 32.14±0.622 a 30.72± 1 260 a 32.14±0.559 a 成虫前期存活率/% 0.35 ± 0.053 b 0.53±0.057 a 0.33 ± 0.064 b 雄雌比率(雄:雌) 0.65 ± 0.291 a 2.42± 1 095 a 1.25 ±0.946 a 可育雌虫比率(产雌:总雌) 0.76 ± 0.106 b 0.83±0.112 b 100±0?000 a -
[1] 马瑞燕. 空心莲子草天敌——莲草直胸跳甲引进中国后的生态适应性研究[D]. 北京: 中国农业科学院, 2001. [2] 沈国军, 徐正浩, 俞谷松.空心莲子草的分布、危害与防除对策[J].植物保护, 2005, 31(3):14-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwbh200503003 [3] JULIEN M H, SKARRATT B, MAYWALD G F. Potential geographical distribution of alligator weed and its biological control by Agasicles hygrophila[J]. Journal of Aquatic Plant Management, 1995, 33: 55-60. http://www.oalib.com/references/17075834 [4] 马瑞燕, 王韧.喜旱莲子草在中国的入侵机理及其生物防治[J].应用与环境生物学报, 2005, 11(2): 246-250. http://www.oalib.com/paper/5178713 [5] 潘晓云, 耿宇鹏, ALEJANDRO SOSA, 等.入侵植物喜旱莲子草——生物学、生态学及管理[J].植物分类学报, 2007, 45(6):884-900. http://www.doc88.com/p-9923452063157.html [6] 中国国家环境保护总局. 中国科学院关于发布中国第一批外来入侵物种名单的通知[EB]. 环发·第11号, 2003. [7] 王韧, 王远, 张格成, 等.空心莲子草叶(虫甲)的寄主专一性测验[J].生物防治通报, 1988, 4(1):14-17. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSWF200803013.htm [8] 吴浪明, 田世尧, 王晓容, 等.广东莲草直胸跳甲生物学的观察[J].中国生物防治, 2000, 16(3): 144-145. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgswfz200003013 [9] 马瑞燕, 王韧, 丁建清.利用传统生物防治控制外来杂草的入侵[J].生态学报, 2003, 23(12): 2677-2688. doi: 10.3321/j.issn:1000-0933.2003.12.023 [10] 王慧, 来小龙, 马瑞燕, 等.入侵种喜旱莲子草天敌——莲草直胸跳甲的生物学特性[J].昆虫知识, 2008, 45(3):480-482. doi: 10.7679/j.issn.2095-1353.2008.104 [11] 史梦竹, 郭建英, 傅建炜, 等.利用光谱特征评价莲草直胸跳甲对喜旱莲子草的控制效果[J].中国生物防治学报, 2012, 28(2):220-225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgswfz201202012 [12] 解海翠, 彩万志, 王振营, 等.大气CO2浓度升高对植物、植食性昆虫及其天敌的影响研究进展[J].应用生态学报, 2013, 24(12):3595-3602. http://www.cjae.net/CN/abstract/abstract19363.shtml [13] YOLANDE L, SERRA, KERRIE GEIL. Historical and Projected Eastern Pacific and Intra-Americas Sea TD-Wave Activity in a Selection of IPCC AR5 Models[J]. Journal of Climate, 2017, 30(7): 2269-2294. doi: 10.1175/JCLI-D-16-0453.1 [14] 中国气象局. 中国气候公报(总第13期)[Z]. 中国气象局科技与气候变化司, 2017. [15] INTERGROVERNMENTAL PANEL ON CLIMATE CHANGE. Climate change 2013: The Physical Science Basis. Summary for Policy Makers. Working group Ⅰ to the Fifth Assessment[C]//Report of Intergovernmental Panel on Cliamte Change. IPCC Secretariat, WMO. Geneva, Switzerland, 2013: 3. [16] 傅桦.全球气候变暖的成因与影响[J].首都师范大学学报(自然科学版), 2007, 28(6): 11-15, 21. http://www.docin.com/p-1285273042.html [17] 单国雷, 朱世东, 朱秀蕾, 等. CO2浓度对西瓜枯萎病菌丝生长和孢子萌发的影响[J].中国瓜菜, 2007, 20(1): 1-3. http://lprapp14.fao.org/XML_Output/2010/CN/CN0912.xml [18] 戈峰.应对全球气候变化的昆虫学研究[J].应用昆虫学报, 2011, 48(5): 1117-1122. doi: 10.7679/j.issn.2095-1353.2011.185 [19] 刘俊雅, 葛亚明, PUGLISES MASSIMO, 等. CO2和温度升高情况下白粉菌侵染对西葫芦生长特性的影响[J].生态学报, 2011, 31(2): 491-497. [20] LINCOLN D E, FAJER E D, JOUNSON R I. Plant-insect herbivore interactions in elevated CO2 environments[J]. Trends Ecol Evol, 1993(8): 64-68. [21] BENZEMER T M, KNIGHT K J, NEWINGTON J G, et al. How general are aphid Responses to elevated atmospheric CO2[J].Ann Ent Soc Am, 1999, 92(5): 724-730. doi: 10.1093/aesa/92.5.724 [22] WHITTAKER J B. Impacts and reponses at population level of herbivorous insects to elevated CO2[J]. Eur J Ent, 1999, 96:149-156. http://cn.bing.com/academic/profile?id=ea14a8d84b14911f80b4ffd15c64c11a&encoded=0&v=paper_preview&mkt=zh-cn [23] 陈法军, 吴刚, 戈峰.大气CO2浓度升高对棉蚜生长发育和繁殖的影响及其作用方式[J].生态学报, 2005, 25(10):2601-2607. doi: 10.3321/j.issn:1000-0933.2005.10.021 [24] 孟玲, 李保平.大气二氧化碳浓度升高对植物昆虫相互关系的影响[J].生态学杂志, 2005, 24(2): 200-205. http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_stxzz200502017 [25] 王晓伟, 姬兰柱, 王桂清, 等.大气CO2浓度升高对森林食叶昆虫的潜在影响[J].应用生态学报, 2006, 17(4):4720-4726. http://www.cjae.net/CN/Y2006/V17/I04/720 [26] 孙玉诚, 郭慧娟, 刘志源, 等.大气CO2浓度升高对植物-植食性昆虫的作用机制[J].应用昆虫学报, 2011, 48(5):1123-1129. doi: 10.7679/j.issn.2095-1353.2011.186 [27] 解海翠, 彩万志, 王振营, 等.大气CO2浓度升高对植物、植食性昆虫及其天敌的影响研究进展[J].应用生态学报, 2013, 24(12):3595-3602. http://www.cjae.net/CN/abstract/abstract19363.shtml [28] FU J W, SHI M Z, W T, et al. Demography and Population Projection of Flea Beetle, Agasicles hygrophila(Coleoptera, Chrysomelidae) Fed on Alligator Weed under Elevated CO2[J]. Journal of Economic Entomology, 2016, 109(3): 1116-1124. doi: 10.1093/jee/tow037 [29] 丁波, 史梦竹, 李建宇, 等.空心莲子草及其天敌莲草直胸跳甲对高含量CO2的响应[J].福建农业学报, 2017, (2): 195-200. http://www.doc88.com/p-9923452063157.html [30] CHI H. TWOSEX-MSChart: A computer program for the life tables and population growth of insect[OL]. National Chung Hsing University, Taichung, Taiwan. 2015. [31] CHI H. TIMING-MSChart: A computer program for the population projection based on age-stage, two-sex life table[OL]. National Chung Hsing University, Taichung, Taiwan. 2015. [32] HSIN CHI. Life-Table Analysis Incorporating Both Sexes and Variable Development Rates Among Individuals[J]. Environmental Entomology, 1988, 17(1): 26-34. doi: 10.1093/ee/17.1.26 [33] YU J Z, HSIN CHI, BING-HUEI CHEN. Life table and predation of Lemnia biplagiata(Coleoptera: Coccinellidae) fed on Aphis gossypii(Homoptera: Aphididae) with a proof on relationship among gross reproduction rate, net reproduction rate, and pre-adult survivorship[J]. Annals of the Entomological Society of America, 2005, 98(4):475-482. doi: 10.1603/0013-8746(2005)098[0475:LTAPOL]2.0.CO;2 [34] CHI HSIN, SU HAWYUAN. Age-stage, two-sex life tables of Aphidius gifuensis(Ashmead)(Hymenoptera: Braconidae) and its host Myzus persicae(Sulzer)(Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate[J]. Environmental Entomology, 2006, 35(1): 10-21. doi: 10.1603/0046-225X-35.1.10 [35] HUANG Y B, H CHI. Life tables of Bactrocera cucurbitae(Diptera: Tephritidae): with an invalidation of the jackknife technique[J]. Journal of Applied Entomology, 2013, 137(5): 327-339. doi: 10.1111/jen.2013.137.issue-5 [36] 冯利. 大气CO2浓度升高对"棉花-棉蚜-棉蚜茧蜂"系统的影响[D]. 长沙: 湖南农业大学, 2008. [37] 钱蕾, 和淑琪, 刘建业, 等.在CO2浓度升高条件下西花蓟马和花蓟马的生长发育及繁殖力比较[J].环境昆虫学报, 2015, 37(4):701-709. [38] 丁波. 空心莲子草及其天敌莲草直胸跳甲对CO2浓度升高的响应[D]. 福州: 福建农林大学, 2017.