Effects of Bamboo Charcoal and Vinasse Fertilizer Addition in Soil on Growth of Tobacco Plants Under Herbicide Stress
-
摘要: 以“云烟87”为供试材料,采用盆栽试验,研究竹炭与酒糟有机肥配施对除草剂二氯喹啉酸土壤残留致害烟株的生长情况,以及对烟叶生理生化指标、超微结构和化学成分的影响。结果表明:二氯喹啉酸土壤残留致烟株畸形生长,而竹炭与酒糟有机肥配施在一定程度上可以缓解其药害症状。其中每株配施120 g竹炭和100 g酒糟有机肥,对药害烟株症状的缓解效果最好,烟苗移栽30 d和60 d后对株高、叶宽的修复效果显著,烟株根系最为发达,其主根长显著高于药剂对照(P < 0.05);竹炭和酒糟有机肥配施显著增加了致害烟叶中SOD酶活性,降低了致害烟叶中POD和MDA酶活性,显著提高了致害烟叶蛋白质含量和叶绿体中淀粉粒含量,细胞壁结构逐渐清晰、质体向细胞壁紧贴排列和部分细胞器细胞结构得到恢复,并改善了烟叶化学成分,其中氮碱比和糖碱比分别为0.97和7.01。Abstract: Yunyan 87 tobacco was used in a pot experiment to study the effect of an application of bamboocharcoal and a vinasse fertilizer on the growth of the plants in a soil artificially laden with quinclorac. The herbicide stress would normally cause a phytotoxicity showing physiological, ultrastructural and chemical composition abnormalities on the plants. The results showed that caused tobacco plant deformity growth by quinclorac residue in the soil. However, by adding bamboo charcoal and 100 g vinasse fertilizer per plant, the best mitigation results were observed. After transplanting, the tobacco seedling experienced on plant height and leaf width had significantly mitigation effect in 30 and 60 days. The roots developed well the length of the main roots longer than that of control (singnificant at P < 0.05). Bamboo charcoal and vinasse fertilizer addition in soil on activity of superoxide dismutase(SOD) singnificantly increased, and those of peroxidase(POD) and malondialdehyde(MDA) singnificantly decreased in the tobacco leaves. Meanwhile, the number of starch granules in the leaf chloroplasts increased, the cell walls became clear, the plastids adhered tightly to the cell wall, and the cell structure of some previously damaged organelles mended. The chemical composition of tobacco leaves was improved, with a nitrogen/alkali ratio of 0.97 and suger/alkali ratio of 7.01.
-
Key words:
- bamboo charcoal /
- vinasse fertilizer /
- quinclorac /
- tobacco herbicidw stress /
-
表 1 竹炭的基本特征
Table 1. Basic properties of bamboo charcoal
pH 全氮/(g·kg-1) 全碳/(g·kg-1) C/N 比表面积SBET/(m2·g-1) 平均孔径(nm) 灰分/% 含水率/% 电导率/(Ω°·cm-1) 固定碳/% 9.66 16.68 335 20.08 44.39 2.62 1.68 6.92 0.12 82.39 表 2 不同浓度竹炭和酒糟有机肥配施对二氯喹啉酸胁迫下烟株农艺性状的影响
Table 2. Effect of various bamboo charcoal and vinasse fertilizer additions in soil on agronomic characteristics of tobacco plants under quinclorac stress
处理 移栽天数/d 株高/cm 叶长/cm 叶宽/cm 茎围/cm CK1 30 30.00±1.53d 19.00±1.53de 11.67±0.67c 3.16±0.05d CK2 21.33±1.76f 17.67±0.33e 3.00±0.29e 3.16±0.10d T1 31.00±0.58cd 24.33±0.67c 3.17±0.33e 3.45±0.14cd T2 34.00±1.53c 25.00±0.58c 8.00±0.58d 3.77±0.07bc T3 46.00±0.58a 35.00±0.58a 17.00±0.58a 4.15±0.10b T4 40.00±0.58b 29.00±0.58b 14.33±1.20b 5.62±0.31a CK 26.00±1.00e 21.50±1.04d 13.67±1.20bc 5.32±0.05a CK1 60 94.68±0.48cd 36.17±0.49bc 10.20±0.42a 5.17±0.22cd CK2 78.97±1.94e 32.00±0.58d 7.33±0.63b 3.70±0.15e T1 96.29±0.57c 39.94±0.64a 10.13±0.45a 5.17±0.22cd T2 103.74±3.88ab 37.03±1.16b 10.33±0.62a 5.45±0.09c T3 106.55±2.87a 37.20±1.30b 10.41±0.40a 6.31±0.23b T4 97.60±0.70bc 35.07±0.15bc 9.76±0.37a 6.86±0.06a CK 88.67±2.36d 34.13±0.68cd 10.90±0.21a 4.77±0.15d 注:同列数字后不同小写字母表示不同时期处理间有显著差异(P < 0.05);表 3、4同。 表 3 竹炭和酒糟有机肥配施对二氯喹啉酸胁迫下烟叶叶绿素含量的影响
Table 3. Effect of bamboo charcoal and vinasse fertilizer addition in soil on chlorophyll content in tobacco plants under quinclorac stress
[单位/(mg·g-1, FW)] 处理 叶绿素a 叶绿素b 叶绿素a+b CK1 2.09±0.03b 0.68±0.02b 2.77±0.05b CK2 2.56±0.06a 0.85±0.01a 3.41±0.02a T1 1.81±0.01c 0.70±0.02b 2.51±0.01c T2 1.74±0.01d 0.57±0.01c 2.31±0.01d T3 1.26±0.01g 0.53±0.01d 1.79±0.01f T4 1.37±0.02f 0.43±0.01f 1.80±0.01f CK 1.48±0.03e 0.47±0.01e 1.95±0.03e 表 4 不同浓度竹炭和酒糟有机肥配施对二氯喹啉酸胁迫下烟叶化学成分的影响
Table 4. Effect of various bamboo charcoal and vinasse fertilizer additions in soil on chemical composition in leaves of tobacco plants under quinclorac stress
处理 淀粉/% 总氮/% 钾/% 总糖/% 还原糖/% 烟碱/% 还原糖/烟碱 总氮/烟碱 CK1 27.94±0.01a 1.59±0.06b 1.52±0.07b 16.27±0.08c 14.61±0.02b 1.91±0.03b 7.64±0.05b 0.83±0.04c CK2 20.12±0.36f 1.37±0.09c 1.37±0.09c 14.54±0.13e 13.55±0.10d 2.30±0.01a 5.89±0.09d 0.59±0.05e T1 20.86±0.05e 1.42±0.14c 1.52±0.09b 16.71±0.18b 14.20±0.12c 1.91±0.01b 7.43±0.26b 0.74±0.05d T2 22.25±0.04c 1.59±0.08b 1.59±0.03ab 15.52±0.18d 10.94±0.06f 1.84±0.01c 5.96±0.08d 0.86±0.03c T3 22.46±0.05c 1.63±0.05b 1.60±0.02ab 15.52±0.08d 11.73±0.01e 1.68±0.02d 7.01±0.06c 0.97±0.04b T4 23.55±0.05b 1.81±0.05a 1.69±0.06a 15.56±0.09d 11.83±0.01e 1.67±0.01d 7.05±0.18c 1.25±0.05a CK 27.90±0.01a 1.69±0.04ab 1.69±0.04a 17.14±0.13a 18.40±0.02a 1.44±0.01e 12.78±0.22a 1.00±0.04b -
[1] 田俊锋, 刘军, 孙旭峰, 等.具有生物活性的喹啉类化合物的研究进展[J].农药, 2011, 50(8): 552-557, 566. http://www.cnki.com.cn/Article/CJFDTOTAL-NYZZ201108003.htm [2] 宋稳成, 杨仁斌, 郭正元, 等.二氯喹啉酸除草剂残留与降解研究进展[J].世界农药, 2005, 27(3): 42-44. http://mall.cnki.net/magazine/Article/NYKG200609005.htm [3] GROSSMANN K, KWIAKOWSKI J. Evidence for a causative role of cyanide, derived from ethylenebiosynthesis, in the herbicidal made of action of quinclorac in barnyard grass[J].Pesticide biochemistry and physiology, 1995, 51(2): 150-160. doi: 10.1006/pest.1995.1015 [4] 李欣. 二氯哇琳酸在烟地中的残留降解吸附及烟地和烟叶中的效应研究[D]. 长沙: 湖南农业大学, 2011. [5] 于庆涛, 宾波, 曾钰.二氯喹啉酸在烟草上发生药害原因及预防措施[J].农学学报, 2014, 4(8): 25-27. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgncxkkj201408007 [6] GLASER B, HAUMAIER L, GUGGENBERGER G, et al. Black carbonin soils: the use of benzenecarboxylic acids as specific markers[J].Organic Geochemistry, 1998, 29(4): 811-819. doi: 10.1016/S0146-6380(98)00194-6 [7] 王萌萌, 周启星.生物炭的土壤环境效应及其机制研究[J].环境化学, 2013, 32(5): 768-780. doi: 10.7524/j.issn.0254-6108.2013.05.008 [8] 孙大荃, 孟军, 张伟明, 等.生物炭对棕壤大豆根际微生物的影响[J].沈阳农业大学报, 2011, 42(5): 521-526. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=synydxxb201105002 [9] 陈泽鹏, 邓建朝, 万树青, 等.二氯喹啉酸致烟草畸形的解毒剂筛选与解毒效果[J].生态环境学报, 2007, 16(2):453-456. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tryhj200702038 [10] 郑雄志, 李宏光, 龙世平, 等.几种解毒剂对烟田二氯喹啉酸次生药害的修复效果[J].南方农业学报, 2013, 44(3):426-430. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxnykx201303012 [11] 朱红梅, 荣湘民, 刘强, 等.酒糟型生物有机肥对莴笋产量与品质的影响[J].湖南农业大学学报(自然科学版), 2009, 35(2): 173-177. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunannydx200902017 [12] 曾晶, 荣湘民, 刘强, 等.酒糟型生物有机肥对豆角产量和品质的影响[J].湖南农业科学, 2007(3):106-109. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hunannykx200703041 [13] 曾晶. 酒糟型生物有机肥对蔬菜的作用效果与机理研究[D]. 长沙: 湖南农业大学, 2007. http://cdmd.cnki.com.cn/article/cdmd-10537-2007207823.htm [14] MOERSCHBACHER B M, NOLL U M, FLOTT B E, et al. Lignin biosynthetic enzymes in stem rustinfectedresistant and susceptible near-isogenic wheat lines[J].Physiological and Molecular Plant Pathology, 1988, 33(1): 33-46. doi: 10.1016/0885-5765(88)90041-0 [15] DHINDSA R S, PLUMB P, THORPE T A. Leafsenescence: correlated with increased levels of membrane permeability and lipid-peroxidation and decreased levels of superoxide dismutase and catalase[J].Journal of Experimental Botany, 1981, (32): 93-101. http://cn.bing.com/academic/profile?id=788d97ecb45d4585bcabbd9d1bc7ca91&encoded=0&v=paper_preview&mkt=zh-cn [16] KOCHBA J, LAVEE S, SPIEGEL P. Differences in peroxidase activity and isoenzymes in embryogenic and non-embryogenic Shamouti' orange ovular callus lines[J].Plant and Cell Physiology, 1977, 18: 463-467. doi: 10.1093/oxfordjournals.pcp.a075455 [17] BRADFORD W W. A rapid and sensitive method for the quantization of microgram quantities of protein utilization the principle of protein-dye binding[J].Analytical biochemistry, 1976, (72): 248-254. http://cn.bing.com/academic/profile?id=97aa4ba70880977aa259302add9c4f17&encoded=0&v=paper_preview&mkt=zh-cn [18] 李合生.植物生理生化试验原理和技术[M].北京:高等教育出版社, 2000: 134-137. [19] 王新瑞.烟草化学[M].北京:中国农业出版社, 2003. [20] 钟秋瓒, 万树青, 黎茶根, 等.江西烟叶畸形生长的原因及治理研究[J].江西农业学报, 2014, 26(6): 65-68. http://industry.wanfangdata.com.cn/hk/Detail/Periodical?id=Periodical_jxnyxb201406018 [21] 陈泽鹏, 王静, 万树青, 等.广东部分地区烟叶畸形生长的原因及治理的研究[J].中国烟草学报, 2004, 10(3): 34-37. http://mall.cnki.net/magazine/Article/ZGYB201101017.htm [22] GROSSMANN K, KWIATKOWSKI J. The mechanism of quinclorac selectivity in grasses[J].Pestic Biochem Phys, 2000, 66(2): 83-91. doi: 10.1006/pest.1999.2461 [23] 张伟明, 孟军, 王嘉宇, 等.生物炭对水稻根系形态与生理特性及产量的影响[J].作物学报, 2013, 39(8): 1445-1451. http://www.cnki.com.cn/Article/CJFDTotal-XBZW201308016.htm [24] 陈丽培, 刘瑞霞, 杨玉珍, 等.干旱胁迫对刺槐、皂荚叶片渗透调节物质含量及保护酶活性的影响[J].河南农业科学, 2017, 46(10):122-127. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200606022.htm [25] 郭美丽, 高维锡, 高会东, 等.植物响应环境胁迫过程中的蛋白质组变化规律研究进展[J].广东农业科学, 2011(20):126-130. doi: 10.3969/j.issn.1004-874X.2011.20.047 [26] 左涛, 刘华山, 韩锦峰, 等.二氯喹啉酸胁迫下降解菌对烤烟叶片中活性氧及保护酶的影响[J].河南农业科学, 2010, 39(12):36-39. doi: 10.3969/j.issn.1004-3268.2010.12.010 [27] 陈泽鹏, 邓建朝, 陈伟明, 等.二氯喹啉酸诱导烟草保护酶活性的动态变化[J].中国烟草科学, 2011, 32(5): 24-28. http://www.cqvip.com/QK/94446A/201105/39954115.html [28] 张倩, 宋超, 相振波, 等.四种典型稻田除草剂对烟草生长的影响[J].中国烟草学报, 2013, 19(5): 82-88. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgycxb201305015 [29] 左涛. 降解菌对二氯喹啉酸胁迫下烤烟生理特性及组织结构的影响[D]. 郑州: 河南农业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10466-1012274975.htm [30] 连培康, 许自成, 孟黎明, 等.贵州乌蒙烟区不同海拔烤烟碳氮代谢的差异[J].植物营养与肥料学报, 2016, 22(1):143-150. doi: 10.11674/zwyf.14315 [31] 罗建新, 肖汉乾, 周万春, 等.烟草活性有机无机专用肥的施用效果I.生物活性肥对烤烟生长发育和烟叶品质的影响[J].湖南农业大学学报(自然科学版), 2002, 28(6): 483-486. https://t.docin.com/p-50816602.html