Excretion of SBDS-GPV in Infected Ducklings
-
摘要: 本研究以短喙型鹅细小病毒(SBDS-GPV,M15株)口服感染2日龄健康易感半番鸭,采集感染后(PI)3、5、7、10、12、14、21 d的口咽和泄殖腔棉拭子,应用荧光定量PCR(qPCR)、病毒分离(VI)结合免疫荧光法(IFA)测定雏鸭感染后的排毒情况。结果显示:qPCR法检测SBDS-GPV感染雏鸭的口咽和泄殖腔排毒时间分别为PI 3~10 d和PI 3~14 d;病毒分离结合IFA检测SBDS-GPV感染雏鸭的泄殖腔排毒时间为PI 5~10 d。研究结果在国内外首次明确了雏鸭感染SBDS-GPV后可经口咽和泄殖腔向外界排毒,且泄殖腔排毒水平高于口咽。
-
关键词:
- 半番鸭 /
- 短喙矮小综合征(SBDS-GPV) /
- 排毒规律 /
- 荧光定量PCR /
- 病毒分离
Abstract: Two-day-old mule ducklings were orally inoculated with short beak and dwarfism syndrome goose parvovirus (SBDS-GPV, strain M15) for this study. Swab samples from oropharynx and cloaca of the infected birds were collected after 3, 5, 7, 10, 12, 14, and 21 days post infection (dPI) for the virus detection by quantitative real-time PCR (qPCR), virus isolation (VI), and immunofluorescence (IFA). As determined by qPCR, the excretion of SBDS-GPV through oropharynx occurred in 3-10 dPI, and cloaca, in 3-14 dPI. On the other hand, the VI and IFA tests indicated that the cloacal excretion happened in 5-10 dPI. The results, for the first time, demonstrated that SBDS-GPV could pass through both oropharynx and cloaca of a diseased duckling, and that the greater extent of the excretion took place via cloaca.-
Key words:
- mule duckling /
- short beak and dwarfism syndrome goose parvovirus /
- excretion /
- qPCR /
- virus isolation
-
表 1 荧光定量PCR法检测泄殖腔拭子中SBDS-GPV的CT值结果
Table 1. CT values of SBDS-GPV in cloaca swabs detected by qPCR
qPCR PI 3 d PI 5 d PI 7 d PI 10 d PI 12 d PI 14 d PI 21 d A B C D A B C D A B C D A B C D A B C D A B C D A B C D CT值 24.17 20.76 22.34 22.59 18.84 19.84 19.12 19.56 25.26 22.19 22.97 24.48 23.57 21.44 22.31 22.70 24.21 26.91 24.45 26.67 26.52 25.24 25.75 26.01 26.68 26.68 26.89 26.47 结果判定 + + + + + + + + + + + + + + + + + - + - - + + - - - - - CT均值 22.47 19.34 23.73 22.51 25.56 25.88 26.68 注:“+”表示阳性;“-”表示阴性。下表同。 表 2 荧光定量PCR法检测口咽拭子中SBDS-GPV的CT值结果
Table 2. CT values of SBDS-GPV in oropharynx swabs detected by qPCR
qPCR PI 3 d PI 5 d PI 7 d PI 10 d PI 12 d PI 14 d PI 21 d E F G H E F G H E F G H E F G H A B C D A B C D A B C D CT值 23.30 21.02 22.12 22.2 20.13 20.37 19.98 20.52 24.62 25.81 24.81 25.62 25.07 25.24 25.33 24.98 27.34 29.12 29.01 27.45 28.55 28.97 28.83 28.69 28.12 28.56 28.36 28.32 结果判定 + + + + + + + + + + + + + + + + - - - - - - - - - - - - CT均值 22.16 20.25 25.22 25.16 28.23 28.76 28.34 表 3 口咽和泄殖腔棉拭子样品接种MDEF的细胞病变和IFA检测结果
Table 3. CPE and IFA results of MDEF infected with oropharynx and cloaca swab samples
样品 盲传代数 PI 3 d PI 5 d PI 7 d PI 10 d PI 12 d PI 14 d PI 21 d CPE IFA CPE IFA CPE IFA CPE IFA CPE IFA CPE IFA CPE IFA 泄殖腔 1代 - - - - - - - - - - - - - - 2代 - - - + - + - + - - - - - - 3代 - + + +++ + +++ + +++ - - - - - - 阳性数 1/4 2/4 3/4 1/4 0/4 0/4 0/4 口咽 1代 - - - - - - - - - - - - - - 2代 - - - - - - - - - - - - - - 3代 - - - + - ± - - - - - - - - 阳性数 0/4 1/4 0/4 0/4 0/4 0/4 0/4 注(1)CPE:“+”表示结果为阳性;“-”表示结果为阴性。(2)荧光判定标准:50个视野未见荧光灶(-);20个视野见1~2荧光灶(±);10视野见1~2个荧光灶(+);1个视野见1~2个荧光灶(++);1个视野见5~10个以上荧光灶(+++);1个视野见10个以上荧光灶(++++)。 -
[1] 吴南洋, 黄梅清, 陈少莺, 等.鸭短嘴矮小综合征的流行病学调查[J].中国家禽, 2016, 38(4): 66-67. http://www.cqvip.com/QK/94027X/201604/668099238.html [2] 陈少莺, 程晓霞, 陈仕龙, 等.半番鸭新型小鹅瘟病毒病研究简报[J].福建农业科技, 2015(7):23-25. http://www.cnki.com.cn/Article/CJFDTotal-FJNK201507008.htm [3] CHEN S, WANG S, CHENG X, et al. Isolation and characterization of a distinct duck-origin goose parvovirus causing an outbreak of duckling short beak and dwarfism syndrome in China[J].Archives of Virology, 2016, 161:1-10. doi: 10.1007/s00705-015-2617-6 [4] XIAO S, CHEN S, CHENG X, et al.The newly emerging duck-origin goose parvovirus in China exhibits a wide range of pathogenicity to main domesticated waterfowl[J].Veterinary Microbiology, 2017, 203:252-256. doi: 10.1016/j.vetmic.2017.03.012 [5] YU K, MA X, SHENG Z, et al. Identification of Goose-Origin Parvovirus as a Cause of Newly Emerging Beak Atrophy and Dwarfism Syndrome in Ducklings[J].Journal of Clinical Microbiology, 2016, 54(8): 1999. doi: 10.1128/JCM.03244-15 [6] LI P, LIN S, ZHANG R, et al. Isolation and characterization of novel goose parvovirus-related virus reveal the evolution of waterfowl parvovirus[J].Transboundary & Emerging Diseases, 2017. http://cn.bing.com/academic/profile?id=b89dc1c9db926cce4978cd27fd5301e8&encoded=0&v=paper_preview&mkt=zh-cn [7] NING K, LIANG T, WANG M, et al. Genetic detection and characterization of goose parvovirus: Implications for epide-miology and pathogenicity in Cherry Valley Pekin ducks[J].Infection Genetics & Evolution, 2017, 51: 101-103. http://www.academia.edu/32760319/Avian_Influenza.pdf [8] 朱小丽, 陈少莺, 程晓霞, 等.小鹅瘟病毒单克隆抗体的制备及特性鉴定[J].中国动物传染病学报, 2011, 19(6):20-24. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSJB201106006.htm [9] 俞博, 朱小丽, 程晓霞, 陈少莺, 等.应用间接免疫荧光法诊断鸭短嘴矮小综合征[J].福建农业学报, 2017, 32(12):1332-1334. http://www.cqvip.com/QK/97754A/2005B12/21300733.html [10] 程晓霞, 肖世峰, 陈仕龙, 等.短嘴型小鹅瘟病毒的传播途径[J].中国兽医学报, 2017:1874-1879. http://www.cqvip.com/QK/93164A/200802/27251766.html