Water Chemistry of Typical Forestry at Zhangjiakou Site for 2022 Winter Olympics
-
摘要: 为改善2022年冬奥会河北省张家口市崇礼赛区(和平林场)森林水环境,以当地典型森林类型(山杨林、云杉林、白桦林和华北落叶松林)为研究对象,比较其在降雨分配过程中(林外雨、穿透雨、树干径流、地表径流)对降水水化学性质的影响程度。化学需氧量(COD)、氨氮(NH3-N)、总氮(TN)、总磷(TP)分别使用消解比色法、水杨酸法、过硫酸盐氧化法、消解抗坏血酸法测定。结果表明:(1)降雨经过林冠层后(穿透雨)4个林分COD、TN含量较林外雨整体上呈增加趋势;NH3-N、TP含量呈减少的趋势;(2)树干径流中4个林分COD、NH3-N、TN、TP含量较林外雨整体上均呈增加趋势;(3)4个林分的地表径流中COD、TN、TP含量较林外雨呈增加趋势;NH3-N含量呈减少趋势;(4)水化学性质综合变化指数分别为林外雨0.65、山杨林0.95,云杉林2.09,白桦林1.30,华北落叶松林2.32。降雨对森林的化学淋溶作用较大,经淋溶作用后穿透雨、树干径流及地表径流中的NH3-N、TN、TP净淋溶量出现了负值。森林降低了雨水中氨氮的含量,对水化学环境起到了一定的净化作用,对改善水生态环境具有一定意义。Abstract: To improve the water ecology in the forest at Chongli (the Peace Forest) of Zhangjiakou, Hebei in preparation for the upcoming 2022 Winter Olympics, the water chemistry of four typical forest types in the area was studied. The Picea wilsonii, Betula platyphylla, Pobulus davidiana and Larix principis-rupprechtii forestry were compared regarding the distribution of precipitation and the chemistry of rainfall, throughfall, stemflow, and surface runoff. The chemical oxygen demand (COD), ammonia nitrogen (NH3-N), total nitrogen (TN) and total phosphorus (TP) in rainwater were determined by the methods of digestion, salicylic acid, persulfate oxidation, and ascorbic acid digestion, respectively. The results showed that:(1) the rains that fell through the tree canopy layer (throughfall) contained increasing COD and TN, but decreasing NH3-N and TP, as compared to those outside the four forestry; (2) in the stemflow, the COD, NH3-N, TN, and TP were higher inside than outside the four forestry; (3) the COD, TN and TP of surface runoff in the four forestry increased, while NH3-N declined, as compared to the rain water outside the forest; and (4) the comprehensive indices on water chemistry were 0.65 for the rain fell outside the forest, 0.95 for the P. davidiana forestry, 2.09 for the P. wilsonii forestry, 1.30 for the B. platyphylla forestry, and 2.32 for the L. principis-rupprechtii forestry. Rainfalls seemed to exert a considerable effect on the chemicals leached in forest. With rainfalls, the net leaching of NH3-N, TN and TP in the throughfall, stemflow and surface runoff at the forestry became negative, indicating that the trees were capable of reducing ammonia nitrogen in rainwater resulting in some water purification effect benefiting the ecology of the environment surrounding the forestry.
-
Key words:
- throughfall /
- stemflow /
- runoff /
- water chemistry
-
表 1 不同林分样地基本概况
Table 1. Profiles of forestry types
序号 林分类型 起源 海拔/m 坡度/° 郁闭度 平均树高
/m平均胸径
/cm林层结构 1 云杉纯林 人工林 1590 22 0.55 13.0 13.4 单层 2 白桦纯林 次生林 1640 26 0.75 12.7 13.0 单层 3 山杨纯林 次生林 1596 31 0.75 11.9 10.1 单层 4 华北落叶松纯林 人工林 1590 24 0.55 14.6 14.8 单层 表 2 地表水环境质量标准基本项目标准限值[14]
Table 2. Basic standards for environmental quality of surface water
[单位/(mg·L-1)] 项目 Ⅰ类 Ⅱ类 Ⅲ类 Ⅳ类 Ⅴ类 COD ≤15 ≤15 ≤20 ≤30 ≤40 NH3-N ≤0.15 ≤0.50 ≤1.00 ≤1.50 ≤2.00 TN ≤0.20 ≤0.50 ≤1.00 ≤1.50 ≤2.00 TP ≤0.02 ≤0.10 ≤0.20 ≤0.30 ≤0.40 注:数据来源于《地表水环境质量标准(GB3838-2002)》 表 3 不同林分水样的水化学性质
Table 3. Chemical properties of water samples from forestry of different types
林分类型 COD/
(mg·L-1)TN/
(mg·L-1)TP/
(mg·L-1)NH3-N/
(mg·L-1)COD
污染指数TN
污染指数TP
污染指数NH3-N
污染指数综合
污染指数林外雨 1 2.60 0.12 1.94 0.025 1.3 0.3 0.97 0.65 山杨纯林 穿透雨 39±2.00cd 0.50±0.10bc 0.07±0.01a 1.48±0.01bc 0.98 0.25 0.16 0.74 0.53 树干径流 58±2.00bc 2.90±0.20bc 0.08±0.01bc 1.61±0.15bc 1.45 1.45 0.21 0.81 0.98 地表径流 67±60.50b 5.90±3.16a 0.17±0.04a 0.73±0.54a 1.66 2.93 0.43 0.39 1.35 云杉纯林 穿透雨 56±1.00bc 4.60±0.10a 0.09±0.03a 1.92±0.05a 1.40 2.30 0.22 0.96 1.22 树干径流 212±8.00a 6.10±0.30ab 0.72±0.03ab 2.22±0.12ab 5.30 3.05 1.81 1.11 2.82 地表径流 90±5.00ab 9.18±4.78a 0.48±0.25a 1.70±0.19a 2.25 4.59 1.19 0.85 2.22 白桦纯林 穿透雨 61±2.00ab 2.90±0.20ab 0.07±0.02a 1.80±0.00ab 1.53 1.45 0.18 0.90 1.01 树干径流 48±2.00cd 1.90±0.10cd 0.10±0.01bc 1.58±0.04bc 1.20 0.95 0.24 0.79 0.80 地表径流 170±46.50a 6.27±2.17a 0.18±0.02a 1.21±0.67a 3.85 4.90 2.01 1.69 3.11 华北落叶松纯林 穿透雨 65±2.00a 4.60±0.20a 0.11±0.02a 1.70±0.10ab 1.63 2.30 0.28 0.85 1.26 树干径流 154±2.00ab 9.80±0.10a 0.81±0.03a 3.37±0.05a 4.24 3.14 0.44 0.60 2.10 地表径流 124±11.50ab 12.08±7.28a 0.35±0.08a 0.76±0.40a 3.09 6.04 0.87 0.38 2.59 注:表中小写字母不同表示同一水样类型不同林分之间存在显著差异(P<0.05)。 表 4 降雨净淋溶4项指标含量和淋溶系数
Table 4. Net contents of 4 indicators and leaching coefficients of rainfalls
林分类型 项目 COD TN TP NH3-N 山杨纯林 穿透雨净淋溶/(mg·L-1) 38 -2.10 -0.06 -0.46 树干径流净淋溶/(mg·L-1) 57 0.30 -0.04 -0.33 地表径流净淋溶/(mg·L-1) 66 3.26 0.05 -1.21 穿透雨淋溶系数 39 0.19 0.53 0.76 树干径流淋溶系数 58 1.12 0.68 0.83 地表径流淋溶系数 67 2.26 1.37 0.38 云杉纯林 穿透雨净淋溶/(mg·L-1) 55 2.00 -0.03 -0.02 树干径流净淋溶/(mg·L-1) 211 0.30 -0.04 -0.33 地表径流净淋溶/(mg·L-1) 89 6.58 0.36 -0.24 穿透雨淋溶系数 56 1.77 0.75 0.99 树干径流淋溶系数 212 1.12 0.67 0.83 地表径流淋溶系数 90 3.53 4.00 0.88 白桦纯林 穿透雨净淋溶/(mg·L-1) 60 0.30 -0.05 -0.14 树干径流净淋溶/(mg·L-1) 47 -0.70 -0.02 -0.36 地表径流净淋溶/(mg·L-1) 169 3.67 0.06 -0.73 穿透雨淋溶系数 61 1.12 0.58 0.93 树干径流淋溶系数 48 0.73 0.83 0.81 地表径流淋溶系数 170 2.41 1.50 0.62 华北落叶松纯林 穿透雨净淋溶/(mg·L-1) 64 2.00 -0.01 -0.24 树干径流净淋溶/(mg·L-1) 153 7.20 0.69 1.43 地表径流净淋溶/(mg·L-1) 123 9.48 0.23 -1.18 穿透雨淋溶系数 65 1.77 0.92 0.88 树干径流淋溶系数 154 3.77 6.75 1.74 地表径流淋溶系数 124 4.65 2.92 0.39 -
[1] 李力, 刘立强, 周光益, 等.南岭常绿阔叶林林冠受损对穿透雨和树干流水化学的影响[J].水土保持学报, 2014, 28(2):45-51. http://www.cnki.com.cn/Article/CJFDTotal-TRQS201402009.htm [2] 刘阳, 杨新兵, 陈波, 等.冀北山地山杨桦木林生态系统水化学特征研究[J].生态环境学报, 2011, 20(11):1665-1669. doi: 10.3969/j.issn.1674-5906.2011.11.013 [3] BAILLIE B R, NEARY D G. Water quality in New Zealand's planted forests:a review[J]. New Zealand Journal of Forestry Science, 2015, 45(1):7. doi: 10.1186/s40490-015-0040-0 [4] PUCKETT L J.Estimates of ion sources in deciduous and coniferous through fall[J]. Atmos Environ, 1990, 24(3):545-556. doi: 10.1016/0960-1686(90)90009-C [5] NORAINI ROSLI, SECA GANDASECA, JOHAN IAMAIL, et al. Comparative Study of Water Quality at Different Peat Swamp Forest of Batang Igan, Sibu Sarawak[J].American Journal of Environmental Sciences, 2010, 6(5):416-421. doi: 10.3844/ajessp.2010.416.421 [6] BARCLAY J R, TRIPP H, BELLUCCI C J, et al. Do waterbody classifications predict water quality?[J].Journal of Environmental Management, 2016, 183:1-12. http://cn.bing.com/academic/profile?id=3fd51a1a83825fc534f779cab06b9a5f&encoded=0&v=paper_preview&mkt=zh-cn [7] 刘世荣, 温远光, 周光益, 等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社, 1996. [8] 孙向阳, 王根绪.贡嘎山森林生态系统降水分配的水化学特征研究[J].水土保持研究, 2009, 16(6):120-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbcyj200906025 [9] ANAND M, MA K M, OKONSKI A, et al. Characterising biocomplexity and soil microbial dynamics along a smelter-damaged landscape gradient[J]. Science of the total environment, 2003, 311(1):247-259. http://cn.bing.com/academic/profile?id=8d5948218f2aa2cc17e34e5efb10051d&encoded=0&v=paper_preview&mkt=zh-cn [10] 德吉维色.初探重铬酸盐法与TNT消解-比色法测定化学需氧量的比较[J].西藏科技, 2015, 268(7):18-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xzkj201507007 [11] 洪乙文.纳氏法和水杨酸盐法测定水中氨氮的比较[J].中外医学研究, 2012, 10(15):43-43. doi: 10.3969/j.issn.1674-6805.2012.15.028 [12] 孙娜娜, 石金辉, 伯绍毅, 等.过硫酸盐氧化-紫外分光光度法测定气溶胶中的总氮[J].化学分析计量, 2007, 16(3):21-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxfxjl200703006 [13] 杨国燕, 周坚.微波消解-抗坏血酸-钼蓝比色法测定油脂中磷含量[J].中国粮油学报, 2016, 31(1):117-122. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zglyxb201601023 [14] 王菲菲, 李琴, 王先良, 等.我国《地表水环境质量标准》历次修订概要及启示[J].环境与可持续发展, 2014, 39(1):28-31. http://www.cnki.com.cn/Article/CJFDTotal-HJKD201401012.htm [15] 田大伦, 项文化, 杨晚华.第2代杉木幼林生态系统水化学特征[J].生态学报, 2002, 22(6):859-865. http://www.cqvip.com/QK/90772X/2002006/6416539.html [16] 黄建辉, 李海涛, 韩兴国, 等.暖温带两种针叶林生态系统中茎流和穿透雨的养分特征研究[J].植物生态学报, 2000, 24(2):248-251. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200002020.htm [17] NORAINI ROSLI, SECA GANDASECA, JOHAN ISMAIL, et al.Comparative Study of Water Quality at Different Peat Swamp Forest of Batang Igan, Sibu Sarawak[J].American Journal of Environmental Sciences, 2010, 6(5):416-421. doi: 10.3844/ajessp.2010.416.421 [18] AZHAR S C, ARIS A Z, YUSOFF M K, et al. Classification of river water quality using multivariate analysis[J]. Procedia Environmental Sciences, 2015, 30(1):79-84. http://cn.bing.com/academic/profile?id=089ad1c3b4b18928d163a862e3719f01&encoded=0&v=paper_preview&mkt=zh-cn [19] 田平, 马钦彦, 刘世海, 等.北京密云油松人工林降水化学性质研究[J].北京林业大学学报, 2005, 27(2):125-128. http://cdmd.cnki.com.cn/Article/CDMD-10004-2009205115.htm [20] 吕茂奎, 谢锦升, 江淼华, 等.米槠常绿阔叶次生林和杉木人工林穿透雨和树干径流可溶性有机质浓度和质量的比较[J].应用生态学报, 2014, 25(8):2201-2208. http://www.cjae.net/CN/abstract/abstract19662.shtml [21] 赵晓静.间伐强度对秦岭南坡锐齿栎林冠层和枯落物层水化学效应的影响[J].生态学报, 2015, 35(24):8155-8164. http://cdmd.cnki.com.cn/Article/CDMD-10712-1015332436.htm [22] 黄建辉, 李海涛, 韩兴国, 等.暖温带两种针叶林生态系统中茎流和穿透雨的养分特征研究[J].植物生态学报, 2000, 24(2):248-251. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB200002020.htm [23] MARTIN M GOSSNER, PEGGY LADE, ANJA ROHLAND, et al. Effects of management on aquatic tree-hole communities in temperate forests are mediated by detritus amount and water chemistry[J].Journal of Animal Ecology, 2016, 85(1):213-226. doi: 10.1111/1365-2656.12437 [24] 陈书军, 田大伦, 康文星, 等.樟树人工林降水化学性质[J].中南林学院学报, 2004, 24(4):6-10. http://www.cqvip.com/qk/96322X/200404/10262274.html [25] 张伟, 杨新兵, 李军.冀北山地华北落叶松林生态系统水化学特征[J].水土保持学报, 2011, 25(4):217-220. https://www.wenkuxiazai.com/doc/1ef3290cf78a6529647d530a.html