Effect of Acoustic Exposure on Yield and Quality of Tea Plants
-
摘要: 利用声频调控技术处理茶树,研究声波种类、音量强弱及处理时间等因素对茶叶品质和产量的影响,确定声频调控技术在茶叶生产上的工艺参数。结果表明,植物声频调控技术对茶树产量和茶叶品质具有积极作用,声频类型因素的影响最为重要,以蟋蟀叫声为主辅配交响乐处理最优。综合经济成本、市场需求等因素,较优生产方案为蟋蟀叫声为主辅配交响乐播放时间6 h,声源距离5~10 m对茶树助长效果较佳,产量达24.78 g·m-2,感官指标达94.6,比对照组增产达12.23%,感官指标提高11.82%。Abstract: Tea bushes were exposed to acoustic frequency to investigate its effect on yield and quality of tea. Frequency, volume strength and duration time of the acoustic treatment were varied to find the optimal treatment played a positive role on the tea quality and yield. Among the variables, frequency appeared to be the most critical, and the cricket chirping accompanied with symphonic music was the optimal type. Taking the economic cost and market demand into consideration, a 6-hour daily of exposure to cricket chirping at a distance within 5 to 10 m from the tea bushes could increase 12.23% on yield of tea to 24.78 g·m-2 and 11.82% on sensory score of brewed tea to 94.6 compared to control, respectively.
-
Key words:
- acoustic frequency application /
- tea /
- yield /
- quality
-
表 1 单因素试验设计
Table 1. Single-factor experiment
试验组 声频种类 声频距离/m 播放时间 1 鸟鸣声 5~10 11:00~13:00 10:00~14:00 09:00~15:00 08:00~16:00 2 鸟鸣声 0~5 09:00~15:00 5~10 10~15 15~20 3 鸟鸣声 5~10 09:00~15:00 纯交响乐 蟋蟀叫声为主辅配交响乐 交响乐为主辅配蟋蟀叫声 表 2 正交试验因素水平
Table 2. Factors and levels of orthogonal experimental design
水平 声频种类 声频距离/m 播放时间 1 鸟鸣声 0~5 10:00~14:00 2 蟋蟀声为主 5~10 09:00~15:00 3 交响乐为主 10~15 08:00~16:00 表 3 正交试验各组茶叶产量和感官评价
Table 3. Yields and sensory scores of teas in orthogonal experiment
编号 声频种类 声频距离/m 播放时间/h 产量/g 感官评分 1 1 1 1 22.33 86.3 2 1 2 2 23.94 91.5 3 1 3 3 23.63 88.6 4 2 1 3 24.28 96.3 5 2 2 1 24.68 94.0 6 2 3 2 24.74 91.5 7 3 1 2 23.68 90.6 8 3 2 3 22.75 93.0 9 3 3 1 23.71 91.3 CT 22.08 84.6 表 4 正交试验结果
Table 4. Results of orthogonal experiment
K值* 产量/g 感官评价 A B C A B C K1 69.90 70.29 69.81 267.4 272.2 270.8 K2 73.70 71.38 71.93 279.8 277.5 276.1 K3 70.13 72.07 71.99 272.9 270.4 273.2 R**> 3.80 1.78 2.18 12.4 7.1 5.3 Order A>C>B A>B>C Optimal level A2 B3 C3 A2 B2 C2 注:* K为因素试验结果之和;** R为极值。 -
[1] 薛占军. 河北省主要污灌土壤质量及其污染风险评价研究[D]. 保定: 河北农业大学, 2012. [2] 赵宏钧, 张皓臻.物理农业技术的应用与发展[J].农业装备技术, 2005, 31(5):28-30. http://mall.cnki.net/magazine/article/NJYJ200812080.htm [3] 孟庆午, 周清, 郑劭婧, 等.植物声频控制技术对番茄生长性状、叶绿素及内源激素影响的研究[J].湖北农业科学, 2012, 51(8):1591-1595. http://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201208025.htm [4] 侯天侦, 李保明, 王明亮, 等.植物声频控制技术对棉花生产的影响[J].农业工程学报, 2010, 26(6):170-174. http://www.cnki.com.cn/Article/CJFDTotal-NYGU201006034.htm [5] HASSANIEN R H E, HOU T Z, LI Y F, et al.Advances in effects of sound waves on plants[J].Journal of Integrative Agriculture, 2014, 13(2):335-348. doi: 10.1016/S2095-3119(13)60492-X [6] 郑国建, 高海燕.我国茶叶产品质量安全现状分析[J].食品安全质量检测学报, 2015, 6(7):2869-2872. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=spaqzljcjs201507085 [7] 殷旭红, 王忠, 郝水源, 等.植物声频控制技术在保护地芹菜上的应用[J].内蒙古农业科技, 2008, (1):48-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgnykj200801020 [8] 禹盛苗, 姜仕仁, 朱练峰, 等.声频控制技术对水稻生长发育、产量及品质的影响[J].农业工程学报, 2013, 29(2):141-147. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201302021.htm [9] KIM J Y, LEE J S, KWON T R, et al.Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes[J].Postharvest Biology & Technology, 2015, 110:43-50. http://cn.bing.com/academic/profile?id=4bc121e08e26c5075f07eaba6da7d27d&encoded=0&v=paper_preview&mkt=zh-cn [10] MENG Q, ZHOU Q, ZHENG S, et al.Responses on photosynthesis and variable chlorophyll fluorescence of Fragaria ananassa under sound wave[J].Energy Procedia, 2012, 16(Part A):346-352. http://cn.bing.com/academic/profile?id=fd0f705efb23ca5c70dcaf0597e4c441&encoded=0&v=paper_preview&mkt=zh-cn [11] OZKURT H, ALTUNTAS O.The effect of sound waves at different frequencies upon the plant element nutritional uptake of snake plant (Sansevieria Trifasciata) plants[J].Indian Journal of Science and Technology, 2016, 9(48):1-5. https://people.dsv.su.se/~mad/chex.html [12] 郭光照, 秦勇, 姜秀梅, 等.空间电场和声波助长仪对日光温室秋延晚辣椒生长发育的影响[J].天津农业科学, 2014, 20(6):107-110. http://www.cqvip.com/QK/94868X/201406/49796544.html [13] 郭光照, 秦勇, 姜秀梅.声波助长仪对早春茬豇豆生长及品质的影响[J].天津农业科学, 2014, 20(7):78-80. http://www.cqvip.com/QK/94868X/201407/50184969.html [14] 袁秋萍, 陈劼, 李玲, 等.声频对小盒栽培黄豆芽菜产量的影响[J].农业工程学报, 2017, 33(7):310-314. doi: 10.11975/j.issn.1002-6819.2017.07.041 [15] 姜仕仁, 黄俊, 韩省华, 等.音乐与蟋蟀鸣声的混合声频对食用菌生长的影响[J].农业工程学报, 2011, 27(6):300-305. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nygcxb201106053 [16] 侯天侦, 李保明, 滕光辉, 等.植物声频控制技术在设施蔬菜生产中的应用[J].农业工程学报, 2009, 25(2):156-160. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_nygcxb200902030 [17] 李涛, 侯月霞, 蔡国友.流式细胞术分析强声波对植物细胞周期的影响[J].生物物理学报, 2001, 17(1):195-198. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_swwlxb200101026 [18] 沈子威, 孙克利, 杨钧, 等.应用傅里叶红外光谱研究强声波作用下植物壁蛋白质二级结构变化[J].光子学报, 1999, 28(7):600-602. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb199907005 [19] JIA Y, WANG B, WANG X, et al.Effect of sound wave on the metabolism of chrysanthemum roots[J].Colloids and Surfaces B:Biointerfaces, 2003, 29(2/3):115-118. http://cn.bing.com/academic/profile?id=3c3d5827d68a0011cd0c3958a740c544&encoded=0&v=paper_preview&mkt=zh-cn [20] LIU Y, WANG B, LONG X, et al.Effect of sound field on the growth of Chrysanthemum callus[J].Colloids and Surfaces B:Biointerfaces, 2002, 24(3/4):321-326. http://cn.bing.com/academic/profile?id=4e45c41ca2c252b7c8c6a5cad88e9aba&encoded=0&v=paper_preview&mkt=zh-cn [21] QIN Y, LEE W C, CHOI Y C, et al.Biochemical and physiological changes in plants as a result of different sonic exposures[J].Ultrasonics, 2003, 41(5):407-411. doi: 10.1016/S0041-624X(03)00103-3 [22] 阳小成, 王伯初, 段传人, 等.声波刺激对猕猴桃愈伤组织ATP含量的影响[J].中国生物工程杂志, 2003, 23(5):95-97. http://www.cqvip.com/QK/95819A/200305/7977062.html [23] 陈凌霄, 吴传宇.植物声频控制技术在茶树栽培上的应用初探[J].农业机械, 2008, (9):68-69. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJI200826034.htm