Evaluation on Microencapsulated Feed for Pseudosciaena Crocea Larvae Based on Particle Size and Stability of Granules in Water
-
摘要: 大黄鱼仔稚鱼微囊饲料的粒度与水中稳定性是影响仔稚鱼净能量得益(netenegy gain)、育苗水质和培苗成活率的重要性状。本研究用激光粒度分布仪检测试制的(经SEM形貌鉴认为微胶囊型态的)大黄鱼仔鱼微囊饲料粒度分布、体积平均粒径和中位数粒径D50的减小率和吸水率,评估其适口性与水中稳定性。参比12日龄时段大黄鱼仔鱼的口径,镜检全投喂微囊饲料的5日龄大黄鱼仔鱼的图像。结果表明,试制的4批次大黄鱼仔鱼微囊饲料的粒径尺度分布可基本符合大黄鱼仔鱼摄食要求。其中A2样品的D50为71.63~61.92 μm,浸泡海水120 min的中位径减小率均值为10.97%;体积平均径减小率均值为14.19%。表明A2样品的水中稳定性可满足大黄鱼仔鱼阶段投饵操作要求。同时表明用湿法激光粒度分布仪检测微胶囊饲料的粒度与水中稳定性的步骤便捷,数据稳定直观,可作为检测渔用微胶囊饲料的粒度与水中稳定性的备选方法。Abstract: Particle size and stability in water of a microencapsulated feeding material for larvae and juveniles of Pseudosciaena crocea were studied in relation to the net energy gain of the fish, the water quality of the aquaculture pond, and the survival rate of the young seedlings. Size distribution and reductions on average volume and median diameter, D50, of the particles after submerging in seawater were used to evaluate the suitability for fish feeding and the granule stability of feed. A laser particle size analyzer was applied for the measurement of 4 microencapsulated feed granules, which had been verified to be microcapsules by SEM morphology. The body size of 12-day-old yellow croaker larvae and the microscopic images of 5-day-old larvae fed on the microencapsulated silage were recorded for comparison. The particle size and size distribution of all four feed samples were found adequate for the feeding. In particular, Sample A2 had a D50 of 71.63-61.92 μm with a 12.15% volume reduction and 19.19% D50 decrease after suspended in seawater for 120 min, indicating its potential in meeting the requirements for feeding larvae and juveniles of P. crocea. Furthermore, the wet laser particle size analyzer was considered adequate for measuring the particle size and size distribution as well as predicting the stability of microencapsulated granules in water.
-
Key words:
- Pseudosciaena crocea /
- larvae /
- microencapsulated feed /
- granularity /
- water stability
-
表 1 4批次微囊饲料基本营养成分
Table 1. Basic nutritional components in four feed samples
(单位/%) 饲料编号 粗蛋白 粗脂肪 粗灰分 水分 钙 总磷 A1 51.69 15.97 12.76 4.02 1.39 0.95 A2 51.13 15.85 12.65 3.89 1.46 0.96 A3 50.85 16.41 12.48 3.96 1.37 0.89 A4 51.91 15.50 13.02 4.35 1.40 0.91 表 2 大黄鱼仔鱼微囊饲料泡海水120 min粒径变化
Table 2. Changes in particle diameter of four feed samples after submerging in seawater for 120 min
样品泡水时间/min 样品A1/μm 样品A2/μm 样品A3/μm 样品A4/μm 体积平均径 中位径D50 体积平均径 中位径D50 体积平均径 中位径D50 体积平均径 中位径D50 0 97.47 87.98 80.48 71.63 68.42 45.00 71.62 45.02 15 96.84 86.74 76.18 69.42 52.20 32.30 32.39 20.09 30 71.71 63.29 73.64 64.86 47.59 28.60 26.37 17.44 45 70.73 58.08 67.69 64.80 44.87 26.67 18.78 14.36 60 61.48 53.47 66.04 63.55 37.36 23.83 18.61 14.36 75 50.94 45.73 64.27 61.68 32.04 19.69 17.21 13.91 90 59.38 46.86 64.96 62.93 27.52 17.37 17.07 13.73 105 49.16 44.15 64.42 61.00 26.56 17.19 17.29 13.90 120 36.09 30.72 65.32 61.92 26.20 17.18 17.35 13.86 表 3 大黄鱼仔鱼微囊饲料泡海水120 min粒径减小率
Table 3. Particle size reductions of four feed samples after submerging in seawater for 120 min
项目 样品A1 样品A2 样品A3 样品A4 初始微囊饲料粒径最大值D98/μm 276.9 242.5 238.6 245.6 浸水120 min粒径最大值D98/μm 138.8 168.8 128.6 52.72 浸水120min中位数粒径D50减小率/% 65.08 13.56 61.80 69.21 浸水120min体积平均径减小率/% 62.97 18.84 61.71 75.77 浸水120 min各时点中位数粒径D50减小率的均值/% 39.04 10.97 51.00 66.22 浸水120 min各时点体积平均粒径减小率的均值/% 36.35 14.19 46.69 71.19 浸水120 min粒径减小率顺序 A2 < A1 < A3 < A4 注:在超声震荡分散条件下,室温23℃。 -
[1] 谢中国, 王芙蓉, 祝爱霞, 等.喷雾干燥法和复合凝聚法制备仔稚鱼微囊配合饲料的研究[J].中国粮油学报, 2011, 26(6):78-81. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ200506025.htm [2] 赵金柱, 艾庆辉, 麦康森, 等.微粒饲料替代生物饵料对大黄鱼稚鱼生长、存活和消化酶活力的影响[J].水产学报, 2008, 32(1):91-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scxb200801015 [3] 刘峰. 大黄鱼和半滑舌鳎仔稚鱼人工微颗粒饲料蛋白源选择及其加工工艺相关研究[D]. 青岛: 中国海洋大学, 2007. [4] 谢中国, 王芙蓉, 刘海英, 等.海水仔稚鱼微粒饲料微观形态和水中稳定性的比较研究[J].中国海洋大学学报, 2013, 43(3):55-61. http://www.cnki.com.cn/Article/CJFDTotal-QDHY201303010.htm [5] 殷名称.鱼类生态学[M].北京:中国农业出版社, 2000:75-76. [6] TOWNSEND C R, WINFIELD I J. The application of optimal foraging theory to feeding behavior in fish[C]//Tytle P & Calow P, ed. Fish Energetics: New Perspectives. London: Croom Helm, 1985: 67-98. [7] WALFORD J, LIM T M, LAM T J. Replacing live foods with microencapsulated diets in the rearing of sea bass (Lates Calcarifer) larvae:Do the larvae ingest and digest protein-membrane microcapsules?[J]. Aquaculture, 1991, 92(2-3):225-235. https://www.researchgate.net/publication/223539318_Replacing_live_foods_with_microencapsulated_diets_in_the_rearing_of_sea_bass_Lates_calcarifer_larvae [8] DABROWSKI K, BARDEGA K. Mouth size and predicted food size preferences of larvae of three cyprinid fish species[J].Aquaculture, 1984, 40(1):41-46. doi: 10.1016/0044-8486(84)90214-X [9] 苏永全.大黄鱼养殖[M].北京:海洋出版社, 2004:87-91. [10] 刘家富.大黄鱼养殖与生物学[M].厦门:厦门大学出版社, 2013:48-51. [11] 殷旭旺, 赵文, 李艳颖, 等.不同地理品系褶皱臂尾轮虫的形态、同工酶及亲缘关系研究[J].大连水产学院学报, 2008, 23(3):168-172. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlscxyxb200803002 [12] 刘东超, 梁飞龙.绿色巴夫藻对褶皱臂尾轮虫的饵料效果试验[J].福建水产, 1999, (1):9-13. http://mall.cnki.net/magazine/Article/SHDX20050100B.htm [13] 许时婴, 张晓鸣, 夏书芹, 等.微胶囊技术原理与应用[M].北京:化学工业出版社, 2006:152-153. [14] 赵冬冬, 牛育华, 宋洁, 等.季铵化壳聚糖包覆腐殖酸微胶囊的制备及性能[J].精细化工, 2017, 34(9):967-974. https://www.doc88.com/p-7334956902212.html [15] 吴克刚.食品微胶囊技术[M].北京:中国轻工业出版社, 2006:13-14. [16] 许绀户朝治. 微胶囊化工艺学[M]. 阎世翔译. 北京: 中国轻工业出版社, 1989: 157-159. [17] 梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社, 1999:363-364. [18] 宋健, 陈磊, 李效军.微胶囊化技术及应用[M].北京:化学工业出版社, 2001:43-45. [19] 中国水产科学研究院长江水产研究所等. SC/T 1077-2004渔用配合饲料通用技术要求[S]. 北京: 中国标准出版社, 2005: 6-8.