Migration of Heavy Metals from Soil to Rice Plant
-
摘要: 为阐明土壤重金属(Cd、Pb、Cr、As、Hg)对水稻的迁移转化,采集福建闽西地区的水稻主产区土壤、水稻植株样品,对土壤-水稻系统中重金属含量特征、水稻对土壤重金属的富集性、重金属在土壤-水稻系统中的迁移转化特性及其与土壤理化性质的关系进行了分析。结果表明:水稻籽粒中5种重金属均在不同程度上超过国家食品安全标准,污染排序为Pb > Cd > As > Cr > Hg,土壤中5种重金属的污染排序为Hg > Cd > Pb > Cr > As;水稻籽粒对土壤中5种重金属的富集能力基本为Cd > As > Cr > Hg > Pb,5种元素在水稻植株各器官的迁移特征一般呈现根部>茎叶>籽粒的现象,其中Cd元素最容易向水稻植株迁移,Pb元素最不易迁移。土壤理化性质均不同程度影响水稻的迁移系数,其中土壤pH的作用相对明显,低pH可促进重金属在土壤-水稻中的迁移吸收。Abstract: Characteristics of the migration of 5 heavy metals (i.e., Cd, Pb, Cr, As, and Hg) in a soil-rice system were investigated. Field samples of soil and the rice grown on it were collected from typical rice production areas in western Fujian for the study. Contents and enrichment/migration capabilities of the heavy metals in the system were determined for a correlation analysis. To varying extents, the metal contents in rice grain samples exceeded the national food safety limits. The severities of the heavy metal pollution in rice were in the order of Pb > Cd > As > Cr > Hg; whereas, in soil, Hg > Cd > Pb > Cr > As. The enrichment capabilities of rice on heavy metals from the soil were in the order of Cd > As > Cr > Hg > Pb.The heavy metal migrations from soil to organs of a rice plant decreased in the order of root > stem leaf > grain. Among the 5 heavy metals, Cd had the highest migration rate, while Pb the lowest. The physiochemical properties of soil also affected the metal transfer. For instance, pH contributed more to the movement of heavy metals in a soil-rice system than others. At low pHs, the heavy metal transfer to and absorption by the plant tended to increase.
-
表 1 研究区土壤-水稻系统重金属含量
Table 1. Heavy metal contents in soil-rice systems at study areas
元素 土壤/
(mg·kg-1)水稻根系/
(mg·kg-1)水稻茎叶/
(mg·kg-1)水稻籽粒/
(mg·kg-1)Cd 0.089~3.67 0.111~12.5 0.01~3.52 0.004~1.14 Pb 43.2~486 8.27~259 0.252~26.9 0.043~2.58 Cr 7.45~366 6.96~215 2.43~36.5 0.018~5.39 As 1.81~30.2 0.823~4.60 0.123~1.46 0.057~0.412 Hg 0.137~1.51 0.018~0.304 0.009~0.089 0.003~0.028 表 2 研究区土壤-水稻系统重金属的迁移能力
Table 2. Migration capability of heavy metals in soil-rice systems at study areas
元素 Tf
(soil-root)Tf
(root-shoot)Tf
(shoot-grain)Cd 0.37~11 0.09~3 0.08~2 Pb 0.04~1 0.01~0.2 0.01~0.1 Cr 0.10~1.6 0.04~0.9 0.02~0.7 As 0.06~1.1 0.03~0.8 0.06~0.9 Hg 0.13~1.8 0.01~0.5 0.01~0.3 注:Tf(soil-root)表示重金属从土壤到水稻根部的迁移系数,Tf(root-shoot)表示重金属从水稻根部到茎叶的迁移系数,Tf(shoot-grain)表示重金属从水稻茎叶到籽粒的迁移系数。 表 3 研究区土壤理化性质与重金属迁移系数的相关性
Table 3. Correlations between physiochemical properties of soil and heavy metal migration at study areas
pH SOM N P K Cd Tf(soil-root) -0.250* -0.094 -0.287** -0.052 0.365** Tf(root-shoot) 0.210* -0.046 -0.111 -0.042 0.328** Tf(shoot-grain) -0.278** -0.288** 0.004 0.012 -0.214* Pb Tf(soil-root) -0.261* -0.219* -0.339** -0.269** 0.260* Tf(root-shoot) 0.004 -0.145 -0.072 0.013 0.202* Tf(shoot-grain) -0.235* -0.057 0.123 0.142 -0.245* Cr Tf(soil-root) -0.077 -0.065 -0.164 -0.041 0.363** Tf(root-shoot) 0.028 0.064 0.006 0.034 -0.242* Tf(shoot-grain) -0.215* -0.128 -0.083 0.005 0.247* As Tf(soil-root) -0.142 -0.289** -0.467** -0.276** 0.543** Tf(root-shoot) 0.459** 0.134 0.281** 0.050 -0.521** Tf(shoot-grain) -0.346** 0.101 0.066 -0.072 -0.092 Hg Tf(soil-root) -0.134 0.104 0.123 0.102 -0.218* Tf(root-shoot) 0.400** -0.157 -0.294** -0.076 0.383** Tf(shoot-grain) -0.243* 0.086 0.117 -0.008 -0.345** 注:**表示极显著相关(P < 0.01),*表示显著相关(P < 0.05)。 -
[1] 俞佳, 戴万宏.土壤重金属污染及其修复研究[J].环境科技, 2008, 21(A02):79-81. http://www.cnki.com.cn/Article/CJFDTotal-LVKJ201512099.htm [2] 郑娜, 王起超, 郑冬梅.锌冶炼厂周围重金属在土壤-蔬菜系统中的迁移特征[J].环境科学, 2007, 28(6):1349-1354. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200706032 [3] 任红艳. 宝山矿区农田土壤-水稻系统重金属污染的遥感监测[D]. 南京: 南京农业大学, 2008. [4] 韩立娜, 居学海, 张长波, 等.水稻镉离子流速的基因型差异及其与镉积累量的关系研究[J].农业环境科学学报, 2014(1):37-42. doi: 10.11654/jaes.2014.01.004 [5] 陈慧茹, 董亚玲, 王琦, 等.重金属污染土壤中Cd, Cr, Pb元素向水稻的迁移累积研究[J].中国农学通报, 2015, 31(12):236-241. doi: 10.11924/j.issn.1000-6850.casb14100001 [6] LIU H Y, PROBST A, LIAO B H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China)[J]. Science of the Total Environment, 2005, 339(1):153-166. http://cn.bing.com/academic/profile?id=7cf973e696fa058ce79c9a4c5b50782a&encoded=0&v=paper_preview&mkt=zh-cn [7] 方凤满, 汪琳琳, 谢宏芳, 等.芜湖市三山区蔬菜中重金属富集特征及健康风险评价[J].农业环境科学学报, 2010, 29(8):1471-1476. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh201008008 [8] GUPTA S, NAYEK S, SAHA R N, et al. Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory[J]. Environmental geology, 2008, 55(4):731-739. doi: 10.1007/s00254-007-1025-y [9] 高怀友, 赵玉杰, 师荣光, 等.区域土壤环境质量评价基准研究[J].农业环境科学学报, 2005, (z1):342-345. doi: 10.3321/j.issn:1672-2043.2005.z1.082 [10] 中华人民共和国卫生部. GB 2762-2012食品安全国家标准食品中污染物限量[S]. 北京: 中国标准出版社, 2012. [11] 王琳, 杜瑞英, 王旭, 等.不同品种稻米重金属富集差异研究[J].热带农业科学, 2015:56-61. http://www.cnki.com.cn/Article/CJFDTotal-RDNK201506012.htm [12] 何丽莲, 李元.农田土壤农药污染的综合治理[J].云南农业大学学报, 2003, 4. http://www.cqvip.com/QK/94499X/200304/8500745.html [13] 张潮海, 华村章, 邓汉龙, 等.水稻对污染土壤中镉, 铅, 铜, 锌的富集规律的探讨[J].福建农业学报, 2003, 18(3):147-150. http://cdmd.cnki.com.cn/Article/CDMD-11117-2003123283.htm [14] 韦朝阳, 陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报, 2001, 21(7):1196-1203. http://www.cnki.com.cn/Article/CJFDTotal-STXB200107023.htm [15] YUAN Y. Research Progress in the Effect of Physical and Chemical Properties on Heavy Metal Bioavailability in Soil-Crop System[J]. Advances in Geosciences, 2014, 4(4):214-223. doi: 10.12677/AG.2014.44026 [16] NORTON G J, DUAN G L, DASQUPTA T, et al. Environmental and genetic control of arsenic accumulation and speciation in rice grain:comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India[J]. Environmental Science & Technology, 2009, 43(21):8381-8386. http://cn.bing.com/academic/profile?id=4916d0985084b3bcdf85d67301916ea4&encoded=0&v=paper_preview&mkt=zh-cn [17] 段桂兰, 张红梅, 刘云霞, 等.水稻基因类型与生长环境对精米中砷积累的影响[J].生态毒理学报, 2013, 8(2):156-162. doi: 10.7524/AJE.1673-5897.20130108001 [18] ZHAO K L, LIU X M, XU J M, et al. Heavy metal contaminations in a soil-rice system:identification of spatial dependence in relation to soil properties of paddy fields[J]. Journal of hazardous materials, 2010, 181(1):778-787. http://cn.bing.com/academic/profile?id=3933cc8ed04a5d739fb82d70f1f61db8&encoded=0&v=paper_preview&mkt=zh-cn [19] 赵科理, 傅伟军, 戴巍, 等.浙江省典型水稻产区土壤-水稻系统重金属迁移特征及定量模型[J].中国生态农业学报, 2016(2):226-234. http://www.cqvip.com/QK/97771X/201602/667927889.html [20] 吴迪, 杨秀珍, 李存雄, 等.贵州典型铅锌矿区水稻土壤和水稻中重金属含量及健康风险评价[J].农业环境科学学报, 2013, 32(10):1992-1998. doi: 10.11654/jaes.2013.10.013 [21] 高博, 王晓君, 周怀东, 等.北京城市道路尘土中铅同位素特征及其源解析[J].环境化学, 2011, 30(5):1045-1046. https://qikan.com.cn/article/hjhx20110525.html [22] 郑顺安, 韩允垒, 郑向群.天津污灌区内气态汞的污染特征及在叶菜类蔬菜中的富集[J].环境科学, 2014, 35(11):4338-4344. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx201411047 [23] 汤丽玲.作物吸收Cd的影响因素分析及籽实Cd含量的预测[J].农业环境科学学报, 2007, 26(2):699-703. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nyhjbh200702056 [24] 曹心德, 魏晓欣, 代革联, 等.土壤重金属复合污染及其化学钝化修复技术研究进展[J].环境工程学报, 2011, 5(7):1441-1453. http://mall.cnki.net/magazine/Article/HJJZ201107002.htm [25] 王丹丽, 关子川, 王恩德.腐殖质对重金属离子的吸附作用[J].黄金, 2003, 24(1):47-49. http://mall.cnki.net/magazine/Article/HJZZ200301012.htm [26] SLOAN J J, DOWDY R H, DOLAN M S. Recovery of biosolids-applied heavy metals sixteen years after application[J]. Journal of Environmental Quality, 1998, 27(6):1312-1317. http://cn.bing.com/academic/profile?id=422b4df3f774a721e1fc734608af2849&encoded=0&v=paper_preview&mkt=zh-cn [27] 孙花, 谭长银, 黄道友, 等.土壤有机质对土壤重金属积累、有效性及形态的影响[J].湖南师范大学自然科学学报, 2011, 34(4):82-87. http://www.cnki.com.cn/Article/CJFDTOTAL-HNSZ201104019.htm