HPLC Profiling of Catechins and Purine Alkaloids in Leaves of Oolong and Green Tea Cultivars
-
摘要: 为揭示适制乌龙茶和绿茶品种鲜叶的基本生化特性,对集中种植的10个乌龙茶品种和10个绿茶品种春季和秋季鲜叶(一芽二、三叶)进行儿茶素类和嘌呤碱高效液相色谱(HPLC)指纹图谱构建,并采用主成分分析(PCA)和正交偏最小二乘判别分析(OPLS-DA)等方法进行可视化模式识别。结果表明,乌龙茶品种与绿茶品种鲜叶样存在良好的类群区分。乌龙茶品种鲜叶样的儿茶素类和嘌呤碱指纹图谱的模式分布较为离散,且存在明显的季节性差异。乌龙茶品种相较绿茶品种鲜叶样拥有更丰富的儿茶素类和嘌呤碱组分。咖啡碱(CAF)、可可碱(TB)、表儿茶素没食子酸酯(ECG)、儿茶素(C)、表没食子儿茶素(EGC)和1种未知化合物为鉴别乌龙茶品种与绿茶品种鲜叶样的主要差异标志物,而7种未知化合物和表没食子儿茶素(EGC)则可视为鉴别乌龙茶品种春季鲜叶样与秋季鲜叶样的重要差异标志物。该研究结果可为适制乌龙茶和绿茶品种的选育与鉴定提供参考依据。Abstract: The contents of catechins and purine alkaloids in two or three leaves with a bud from the spring and autumn shoots of 10 oolong and 10 green tea cultivars (Camellia sinensis) were determined by high performance liquid chromatography. A visual pattern recognition was performed with the aid of the principal components analysis, orthogonal partial least squares discriminant analysis and other statistical methods. There were distinctive differences on the profiles between the two categories of cultivars. The catechin and purine alkaloid fingerprints of oolong teas appeared more abundant and diverse than those of green teas. They also differed significantly by the season the leaves were plucked. Among the chemical constituents, caffeine, theobromine, epicatechin gallate, catechin, epigallocatechin, and an unknown component were particularly prominent. They could be used as the major markers for differentiating the two teas. In addition, 7 unknown components and epigallocatechin appeared suitable for distinguishing the spring shoots from the autumn shoots of oolong teas.
-
Key words:
- catechins /
- purine alkaloids /
- pattern recognition /
- tea cultivars /
- fingerprint
-
图 5 不同来源茶鲜叶儿茶素类和嘌呤碱指纹特征的差异分析
注:A为火山图,A1为乌龙茶品种vs.绿茶品种,A2为春季鲜叶vs.秋季鲜叶(乌龙茶品种);B为S形曲线,B1为乌龙茶品种vs.绿茶品种,B2为春季鲜叶vs.秋季鲜叶(乌龙茶品种)。图A1中的红色三角形表示该成分在乌龙茶品种鲜叶样中含量较高,且与绿茶品种鲜叶样存在显著性水平差异(P < 0.05);A2中的红色三角形表示该成分在乌龙茶品种春季鲜叶样中含量较高,而蓝色正方形表示该成分在乌龙茶品种秋季鲜叶样中含量较高,且二者存在显著性水平差异(P < 0.05)。B1的红色圆形为区分乌龙茶品种与绿茶品种鲜叶样的主要差异成分;图B2的红色圆形为鉴别乌龙茶品种春季鲜叶样与秋季鲜叶样的主要差异成分。
Figure 5. Discriminant components obtained from catechin and purine alkaloid fingerprints of various tea samples
表 1 茶样编码及其鲜叶来源
Table 1. Codes for teas and sample sources
样品编码 鲜叶来源 OS01 肉桂春季一芽二、三叶 OS02 水仙春季一芽二、三叶 OS03 大红袍春季一芽二、三叶 OS04 矮脚乌龙春季一芽二、三叶 OS05 铁观音春季一芽二、三叶 OS06 黄棪春季一芽二、三叶 OS07 梅占春季一芽二、三叶 OS08 白芽奇兰春季一芽二、三叶 OS09 金观音春季一芽二、三叶 OS10 黄观音春季一芽二、三叶 GS01 福鼎大白茶春季一芽二、三叶 GS02 福鼎大毫茶春季一芽二、三叶 GS03 福安大白茶春季一芽二、三叶 GS04 福云6号春季一芽二、三叶 GS05 福云7号春季一芽二、三叶 GS06 福云10号春季一芽二、三叶 GS07 霞浦春波绿春季一芽二、三叶 GS08 九龙大白茶春季一芽二、三叶 GS09 霞浦元宵茶春季一芽二、三叶 GS10 早春毫春季一芽二、三叶 OA01 肉桂秋季一芽二、三叶 OA02 水仙秋季一芽二、三叶 OA03 大红袍秋季一芽二、三叶 OA04 矮脚乌龙秋季一芽二、三叶 OA05 铁观音秋季一芽二、三叶 OA06 黄棪秋季一芽二、三叶 OA07 梅占秋季一芽二、三叶 OA08 白芽奇兰秋季一芽二、三叶 OA09 金观音秋季一芽二、三叶 OA10 黄观音秋季一芽二、三叶 GA01 福鼎大白茶秋季一芽二、三叶 GA02 福鼎大毫茶秋季一芽二、三叶 GA03 福安大白茶秋季一芽二、三叶 GA04 福云6号秋季一芽二、三叶 GA05 福云7号秋季一芽二、三叶 GA06 福云10号秋季一芽二、三叶 GA07 霞浦春波绿秋季一芽二、三叶 GA08 九龙大白茶秋季一芽二、三叶 GA09 霞浦元宵茶秋季一芽二、三叶 GA10 早春毫秋季一芽二、三叶 -
[1] 陈常颂, 余文权.福建省茶树品种图志[M].北京:中国农业科学技术出版社, 2016:36-70. [2] 叶乃兴.茶叶品质性状的构成与评价[J].中国茶叶, 2010, 32(8):10-11. http://www.cqvip.com/QK/95991X/2010008/35051090.html [3] 吴平.茶叶分类进展研究——兼论六堡茶的归属[J].茶叶科学, 2014, 34(4):408-416. http://www.cqvip.com/QK/97861X/201404/662109918.html [4] 宛晓春.茶叶生物化学:第三版[M].北京:中国农业出版社, 2008:35-39. [5] YOKOZAWA T, NOH J S, PARK C H. Green tea polyphenols for the protection against renal damage caused by oxidative stress[J]. Evid Based Complement Alternat Med, 2012, (5):845917. http://europepmc.org/abstract/MED/22844338 [6] BANDYOPADHYAY P, GHOSH A K, GHOSH C. Recent developments on polyphenol-protein interactions:effects on tea and coffee taste, antioxidant properties and the digestive system[J]. Food Funct, 2012, 3(6):592-605. doi: 10.1039/c2fo00006g [7] KANWAR J, TASKEEN M, MOHAMMAD I, et al. Recent advances on tea polyphenols[J]. Front Biosci (Elite Ed), 2012, (4):111-131. http://europepmc.org/abstract/MED/22201858 [8] MAK J C W. Potential role of green tea catechins in various disease therapies:Progress and promise[J]. Clin Exp Pharmacol Physiol, 2012, 39(3):265-273. doi: 10.1111/j.1440-1681.2012.05673.x [9] HEINRICH U, TRONNIER H, DE SPIRT S, et al. Green tea polyphenols provide photoprotection and improve physiological parameters of human skin[J]. Agro Food Industry Hi-Tech, 2011, 22(6):38-39. http://www.teknoscienze.com/tks_article/green-tea-polyphenols-provide-photoprotection-and-improve-physiological-parameters-of-human-skin/ [10] BANSAL S, SYAN N, MATHUR P, et al. Pharmacological profile of green tea and its polyphenols:a review[J]. Med Chem Res, 2012, 21(11):3347-3360. doi: 10.1007/s00044-011-9800-4 [11] MOHANPURIA P, KUMAR V, YADAV S K. Tea caffeine:Metabolism, functions, and reduction strategies[J]. Food Sci Biotechnol, 2010, 19(2):275-287. doi: 10.1007/s10068-010-0041-y [12] 刘英, 吴曙光, 尹州, 等.指纹图谱技术在茶叶研究上的应用[J].茶叶科学, 2013, 33(1):13-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cykx201301004 [13] LIN J, ZHANG P, PAN Z Q, et al. Discrimination of oolong tea (Camellia sinensis) varieties based on feature extraction and selection from aromatic profiles analysed by HS-SPME/GC-MS[J]. Food Chem, 2013, 141(1):259-265. doi: 10.1016/j.foodchem.2013.02.128 [14] WANG Y X, LI Q, WANG Q, et al. Simultaneous determination of seven bioactive components in Oolong tea Camellia sinensis:quality control by chemical composition and HPLC fingerprints[J]. J Agric Food Chem, 2012, 60(1):256-260. doi: 10.1021/jf204312w [15] CHEN L, ZHOU Z X. Variations of main quality components of tea genetic resources[Camellia sinensis (L.) O. Kuntze]preserved in the China National Germplasm Tea Repository[J]. Plant Foods for Human Nutrition, 2005, 60(1):31-35. doi: 10.1007/s11130-005-2540-1 [16] ASIL M H. Effects of plucking methods on yield and quality of black tea (Camellia sinensis L.)[J]. J Food Agric Environ, 2008, 6(2):337-341. https://www.cambridge.org/core/journals/experimental-agriculture/article/div-classtitlesome-factors-limiting-yields-of-tea-span-classitaliccamellia-sinensisspandiv/DF338017254F225EB1A184B6B2D4F59A [17] LEE J E, LEE B J, CHUNG J O, et al. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites:A1H NMR-based metabolomics study[J]. J Agric Food Chem, 2010, 58(19):10582-10589. doi: 10.1021/jf102415m [18] WANG L Y, WEI K, JIANG Y W, et al. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.)[J]. Eur Food Res Technol, 2011, 233(6):1049-1055. doi: 10.1007/s00217-011-1588-4 [19] DRYNAN J W, CLIFFORD M N, OBUCHOWICZ J, et al. The chemistry of low molecular weight black tea polyphenols[J]. Nat Prod Rep, 2010, 27(3):417-462. doi: 10.1039/b912523j [20] ANANINGSIH V K, SHARMA A, ZHOU W. Green tea catechins during food processing and storage:A review on stability and detection[J]. Food Res Int, 2013, 50(2):469-479. doi: 10.1016/j.foodres.2011.03.004 [21] 张正竹.茶叶生物化学实验教程[M].北京:中国农业出版社, 2009:16-22. [22] HU B, WANG L, ZHOU B, et al. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detection[J]. J Chromatogr A, 2009, 1216(15):3223-3231. doi: 10.1016/j.chroma.2009.02.020 [23] 孙琳, 张秋菊, 王文佶, 等.基于色谱-质谱平台的代谢组学数据预处理方法[J].中国卫生统计, 2017, 34(3):518-522. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGHY201510001283.htm [24] BIJLSMA S, BOBELDIJK I, VERHEIJ E R, et al. Large-scale human metabolomics studies:A strategy for data (pre-) processing and validation[J]. Anal Chem, 2006, 78(2):567-574. doi: 10.1021/ac051495j [25] BALENTINE D A, WISEMAN S A, BOUWENS L C M. The chemistry of tea flavonoids[J]. Crit Rev Food Sci Nutr, 1997, 37(8):693-704. doi: 10.1080/10408399709527797 [26] HARA Y. Tea catechins and their applications as supplements and pharmaceutics[J]. Pharmacol Res, 2011, 64(2):100-104. doi: 10.1016/j.phrs.2011.03.018 [27] HIGDON J V, FREI B. Tea catechins and polyphenols:Health effects, metabolism, and antioxidant functions[J]. Crit Rev Food Sci Nutr, 2003, 43(1):89-143. doi: 10.1080/10408690390826464 [28] 陈林, 陈键, 张应根, 等.清香型乌龙茶品质形成过程中儿茶素类和嘌呤碱指纹图谱变化规律[J].茶叶科学, 2011, 31(6):493-503. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cykx201106004 [29] 陈林, 陈键, 张应根, 等.清香型乌龙茶品质形成过程主要生化成分的动态变化规律[J].福建农业学报, 2012, 27(8):857-862. http://www.cnki.com.cn/Article/CJFDTotal-ANHE201308182.htm [30] 中国农业科学院茶叶研究所.茶树生理及茶叶生化实验手册[M].北京:中国农业出版社, 1983:119-121. [31] 陈亮, 杨亚军.茶树种质资源描述规范和数据标准[M].北京:中国农业出版社, 2005:71-72. [32] CHEN Q S, GUO Z M, ZHAO J W. Identification of green tea's[Camellia sinensis (L.)] quality level according to measurement of main catechins and caffeine contents by HPLC and support vector classification pattern recognition[J]. J Pharm Biomed Anal, 2008, 48(5):1321-1325. doi: 10.1016/j.jpba.2008.09.016 [33] KUMAR R S S, MURALEEDHARAN N N, MURUGESAN S, et al. Biochemical quality characteristics of CTC black teas of south India and their relation to organoleptic evaluation[J]. Food Chem, 2011, 129(1):117-124. doi: 10.1016/j.foodchem.2011.04.042 [34] OBANDA M, OWUOR P O, TAYLOR S J. Flavanol composition and caffeine content of green leaf as quality potential indicators of Kenyan black teas[J]. J Sci Food Agric, 1997, 74(2):209-215. doi: 10.1002/(ISSN)1097-0010 [35] YIN J F, XU Y Q, YUAN H B, et al. Cream formation and main chemical components of green tea infusions processed from different parts of new shoots[J]. Food Chem, 2009, 114(2):665-670. doi: 10.1016/j.foodchem.2008.10.004 [36] 林心炯, 郭专, 姚信恩, 等.乌龙茶鲜叶原料成熟度的生物生化特征[J].茶叶科学, 1991, 11(1):85-86. http://mall.cnki.net/magazine/Article/CHAY201201007.htm [37] LEE J E, LEE B J, HWANG J A, et al. Metabolic dependence of green tea on plucking positions revisited:A metabolomic study[J]. JAgricFood Chem, 2011, 59(19):10579-10585. http://www.ncbi.nlm.nih.gov/pubmed/21899366 [38] SAMANTA T, KOTAMREDDY J N R, GHOSH B C, et al.Changes in targeted metabolites, enzyme activities and transcripts at different developmental stages of tea leaves:a study for understanding the biochemical basis of tea shoot plucking[J]. Acta Physiol Plant, 2017, 39(1):11. doi: 10.1007/s11738-016-2298-0