Functions of CpG-ODN 2006 on Resistance of Zebra Fish against Vibrio vulnificus
-
摘要: 为创建环境友好的免疫预防技术,分析CpG-ODN对斑马鱼抗创伤弧菌感染的作用,采用PBS(对照)和人工合成的CpG-ODN 2006(试验组)序列分别注射斑马鱼,48 h后创伤弧菌FJ03-X2进行攻毒,收集斑马鱼的肠道和肾脏组织提取RNA,逆转录成cDNA,通过Real-time RT-PCR检测相关基因的表达。结果表明,24 h后CpG-ODN 2006组的免疫保护率高达70.0%;相关免疫基因表达检测结果发现CpG-ODN 2006组肠道中lysozyme、Myd88、tlrs和tnf的mRNA水平显著下调,而il1b和il10则显著上调;肾脏中的基因表达差异更为明显:lysozyme显著上调,il1b、myd88、tnf、ifng1-2、il10、il22均显著下调。结果表明CpG-ODN 2006通过调节斑马鱼肾脏及肠道中非特异性免疫相关基因的表达,维持免疫系统的平衡,增强抗创伤弧菌FJ03-X2感染的能力。Abstract: Groups of zebra fish were injected with either PBS as controlor synthetic CpG-ODN 2006 for treatment, and 48 hours later, challenged by Vibrio vulnificus FJ03-X2 infection in this study. The immune protection of the treatment group reached a rate of 70.0% in 24 hours.RNA was extracted from the intestinal and kidney tissues and then reverse transcribed into cDNA. The mRNAs of lysozyme, Myd88, tlrs and tnf in the guts of the treated fish were significantly downregulated, while those of il1b and il10, significantly upregulated, as detected by Real-time RT-PCR.The differences on gene expression in kidney were even more apparent as the expression of lysozyme significantly upregulated, and those of il1b, myd88, tnf, ifng1-2, il10 and il22 significantly downregulated. It appeared that the CpG-ODN 2006 injection afforded the zebra fish to vitalize its immune system through regulating the expressions of non-specific immunity-related genes in the kidney and intestinesto ward off the viral attack.
-
Key words:
- zebra fish /
- CpG-ODNs /
- Vibrio vulnificus /
- non-specific immunity
-
图 2 Real-time RT-PCR检测创伤弧菌感染后斑马鱼肠道中的mRNA表达水平
注:A为lysozyme、il1b和myd88的mRNA水平,B为tlr9、tlr21、tlr1、tlr3和tlr4a的mRNA水平,C为tnfa2、ifng1-2、il10、il22和il26的mRNA水平。**表示与对照组相比试验组存在极显著性差异P < 0.01。图 3同。
Figure 2. RT-PCR detection of mRNA in intestinal tract of V. vulnificus-infected zebra fish
表 1 PCR引物序列
Table 1. PCR primer sequence
目的基因 正向引物序列(5′-3′) 反向引物序列(5′-3′) actb1 CACTTCACGCCGACTCAAAC TCGGGGATGCTTATTTGCCA tlr9 CTGGGGACTTTAGAGAGCCG TCTCATTTCCAGGCCATGTT tnfa2 GCCAACCCATTTCAGCGATTG GGCATGTGATGAAGCCAAACGAA tlr21 TTGCAGGACGTTAGCTTGGT ATTGCCCCAGTATCACACGG ifng1-2 GCCGTCTCTTGCGTTCTTTA AGCGAAAGGCTTTGTTTGAG tlr1 GTGGCAGAGGCTCCAGAAGA CAGAGCGAATGGTGCCACTAT tlr3 TGATGCCCATGCCTGTAAGA TGGAGCATCACAGGGATAAAGA lysozyme CCGTAGTCCTTCCCCGTATCA GATTTGAGGGATTCTCCATTGG il10 CCTCTTGCATTTCACCATATCC TCACGTCATGAACGAGATCC il22 CACGAGCACAGCAAAGCAAT CATCGAGGAACAACGGTGTACA il26 TTTCCCCAATATCCGATGGA TGGACTTCGCAGCACAAAATG il1b CACTTCACGCTCTTGGATGA TGGACTTCGCAGCACAAAATG tlr4a TCCACAAGAACAAGCCTTTG TGTCAAGATGCCACATCAGA myd88 TCGTCATCTAAAATTTCTTTGAGC TCCGAAAGAAACTGGGTCTG 表 2 CpG-ODN 2006免疫保护试验
Table 2. CpG-ODN 2006 immunity protection test
组别 攻毒尾数 死亡尾数 24 h死亡率/% 免疫保护率(RPS)/% 对照组(PBS组) 67 36 53.7 0 试验组(CpG-ODN 2006组) 62 10 16.1 70.0 -
[1] 廉超, 雒敏义, 宫瑞.浅析我国渔药研发、管理现状及未来发展趋势[J].水产学杂志, 2012, 25(1):30-33. http://edu.wanfangdata.com.cn/Periodical/Detail/qgsj201433257 [2] 陈俊鹏, 林树育, 吴群彬, 等.分子佐剂CpG DNA的研究进展及应用概况[J].现代农业科技, 2012, (24):269-270. doi: 10.3969/j.issn.1007-5739.2012.24.177 [3] 李娜, 孙志伟, 俞炜源. CpG免疫刺激DNA序列及其在疫苗佐剂中的应用[J].生物技术通讯, 2008, (4):572-575. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swjstx200804027 [4] 廖文勇, 盛长忠, 金永杰, 等. CpG寡核苷酸链作为新型佐剂的研究进展[J].中国医药生物技术, 2007, 2(4):299-301. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyyswjs200704013 [5] 赵俊杰, 付承英.CpG-ODN生物学活性和免疫作用的研究进展[J].现代免疫学, 2011, 31(2):168-171. http://mall.cnki.net/magazine/Article/SHMY201102018.htm [6] BROWN G D.Dectin-1:a signalling non-TLR pattern-recognition receptor[J].Nat Rev, 2006, 6(1):33-43. http://www.nature.com/articles/doi:10.1038%2Fnri1745 [7] 曹丽萍, 丁炜东, 张柳, 等.不同CpG-DNA序列对异育银鲫离体培养免疫细胞活性影响的研究[J].云南农业大学学报, 2010, 25(5):629-635. http://www.cnki.com.cn/Article/CJFDTotal-YNDX201005009.htm [8] FARMER J J.Vibrio("Beneckea") vulnificus, the bacterium associated with sepsis, septicaemia and the sea[J].Lancet, 1979, 2:903. http://linkinghub.elsevier.com/retrieve/pii/S0140673679927156 [9] MICHEAL P, DOYLE. Foodbome bacterial pathogens[M].London:Food Trade Press, 1989:578. [10] BIOSCA E G, AMARO C, ESTEVE C, et al.First record of Vibrio vulnificus biotype 2 from diseased European eel, Anguilla anguilla[J].J Fish Dis, 1991, 14:103-109. doi: 10.1111/jfd.1991.14.issue-1 [11] 张力, 谢英, 周昕. Baff转基因斑马鱼的构建及相关基因表达检测[J].四川动物, 2013, 32(3):343-347. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-IGSQ201209001068.htm [12] 许斌福, 龚辉, 李素一, 等.鳗源创伤弧菌的鉴定与血清型分析[J].渔业研究, 2016, 38(5):351-356. http://www.cnki.com.cn/Article/CJFDTotal-FJSC201605001.htm [13] 许斌福, 林天龙, 董传甫, 等.鳗鲡创伤弧菌的分子鉴定[J].中国人兽共患病学报, 2005, 21(11):995-997. doi: 10.3969/j.issn.1002-2694.2005.11.017 [14] 姚一琳. 斑马鱼肠道微细结构及肠黏膜屏障的研究[D]. 南京: 南京农业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10307-1012268716.htm [15] 荣换玲. 创伤弧菌感染致死机制及抗生素治疗的实验研究[D]. 新乡: 河南师范大学, 2009. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1571846 [16] 王光锋, 张士璀.补体和溶菌酶在清除文昌鱼体内细菌中的作用[J].水产科学, 2013, 32(9):497-502. http://www.cnki.com.cn/Article/CJFDTOTAL-CHAN201309001.htm [17] 陈传悦. 微囊藻毒素microcystin-LR对斑马鱼组织病理损伤和免疫调节的影响[D]. 武汉: 华中农业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10504-1016155406.htm [18] 王秀丽, 王辉, 薛方民. TLRs在硬骨鱼中的研究进展[J].山东工业技术, 2014, (20):252-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdgyjs201420219 [19] 姚志刚, 冯建军, 王艺磊, 等.欧洲鳗鲡MYD88基因的克隆及其免疫功能分析[J].水产学报, 2015, 39(3):305-317. http://www.cnki.com.cn/Article/CJFDTOTAL-SCKX201503001.htm [20] 刘艳卉. 斑马鱼TLR信号通路TIRAP与MYD88分子的克隆表达及功能研究[D]. 广州: 中山大学, 2008. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1478213 [21] 赵德志. 斑马鱼Toll样受体及RLHs下游接头分子的进化与功能研究[D]. 广州: 中山大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1691053