Factors Affecting Non-enzymatic Browning of Fermented Physalis pubescens L. Juice
-
摘要: 为解析毛酸浆果汁在发酵过程中非酶褐变的机理,研究在同时接入酵母菌和乳酸菌,于25℃和37℃的发酵过程中各影响因素对非酶褐变的影响。以色差(△E)值为指标,检测其在发酵过程中引起非酶褐变的抗坏血酸(Vc)、5-羟甲基糠醛(5-HMF)、多酚、还原糖、氨基态氮等主要致褐因素的变化。通过通径系数分析方法,分析毛酸浆发酵过程中非酶褐变的主要影响因素。结果表明,在25℃发酵条件下,5-HMF对色差△E值起到的直接作用最强,5-HMF和氨基态氮的交互作用是决定色差△E值的第一决定因素;在37℃发酵条件下,5-HMF对色差△E值起到的直接作用最强,5-HMF和还原糖的交互作用是决定色差△E值的第一决定因素。说明毛酸浆发酵液中5-HMF、还原糖和氨基态氮是导致毛酸浆发酵过程中非酶褐变的最重要因素。Abstract: Key elements involving in the non-enzymatic browning of fruit juice of Physalis pubescens L. during fermentation were analyzed to understand the underlying mechanism. A symbiotic fermentation on the juice using yeast and lactic acid bacteria simultaneously at 25℃ or 37℃ was conducted. Color changes, △E, along with the contents of vitamin C, total phenols, 5-hydroxymethylfurfural (5-HMF), reducing sugar, and amino acid nitrogen of the juice during the entire process at various temperatures were monitored for a path coefficient analysis. The results indicated that 5-HMF had the strongest effect on △E, and that its interaction with the amino acids was the main cause of the non-enzymatic browning at 25℃. At 37℃, the interaction between 5-HMF and reducing sugars appeared to be the prime source for the browning of the juice. It was, thus, concluded that 5-HMF, reducing sugars and amino acids were among the key elements that led to the color change of the fruit juice during fermentation.
-
Key words:
- Physalis pubescens L. /
- fermentation /
- non-enzymatic browning /
- △E /
- path coefficient analysis
-
表 1 毛酸浆发酵过程中的主要指标变化
Table 1. Changes on key indices in fermentation of P. pubescens juice
发酵温度
/℃发酵天数
/dX1抗坏血酸/
(mg·hg-1)X25-HMF/
(μg·mL-1)X3多酚/
(μg·mL-1)X4还原糖
/mgX5氨基酸态氮
/(mg·100mL-1)Y色差值
/(△E)25 0 26.676±0.221 5.306±0.082 93.705±0.063 3.924±±0.000 40.00±0.000 38.252±0.007 2 22.620±0.221 10.592±0.087 85.289±0.070 3.675±0.002 42.01±0.000 39.098±0.007 4 16.380±0.441 13.449±0.087 84.293±0.070 3.372±0.001 42.00±0.000 39.930±0.014 6 14.820±0.221 16.735±0.058 83.496±0.211 3.260±0.005 49.05±0.491 41.253±0.028 8 11.701±0.221 20.592±0.029 81.753±0.000 3.087±0.002 54.25±0.247 42.121±0.042 10 7.488±0.110 23.694±0.202 79.761±0.000 2.937±0.002 58.00±0.282 43.274±0.007 12 5.928±0.221 24.898±0.058 78.367±0.000 2.790±0.006 60.07±0.000 43.915±0.000 14 3.432±0.110 26.469±0.029 77.271±0.282 2.695±0.002 61.50±0.701 44.950±0.000 16 2.184±1.044 28.011±0.115 75.627±0.070 2.607±0.007 62.25±0.000 45.114±0.014 18 0.936±0.221 29.184±0.058 75.378±0.000 2.542±0.001 63.05±0.000 45.358±0.069 20 0.936±0.044 30.102±0.317 68.705±0.000 2.462±0.009 63.50±0.707 45.885±0.051 22 0.936±0.022 30.775±0.058 61.036±0.126 2.426±0.003 64.00±0.000 46.181±0.052 37 0 26.676±0.221 5.306±0.082 93.705±0.063 3.924±0.000 40.00±0.000 38.252±0.007 2 16.848±0.221 15.612±0.087 80.956±0.563 3.069±0.009 60.50±0.566 40.076±0.014 4 10.920±0.110 20.469±0.144 78.068±0.000 2.971±0.005 69.05±0.141 42.781±0.014 6 9.204±0.221 25.326±0.029 77.271±0.000 2.788±0.000 72.00±0.282 44.149±0.021 8 6.864±0.441 29.857±0.202 75.578±0.070 2.706±0.005 75.12±0.141 45.587±0.007 10 2.808±0.441 34.735±0.115 73.884±0.000 2.602±0.002 77.15±0.424 46.712±0.000 12 0.624±0.110 37.571±0.144 72.445±0.077 2.509±0.008 83.00±0.424 47.737±0.007 14 0.468±0.221 39.633±0.115 70.996±0.423 2.400±0.001 87.50±0.707 48.682±0.014 16 0.156±0.000 42.204±0.173 68.008±0.563 2.331±0.006 92.00±0.000 49.317±0.014 18 0.156±0.000 45.184±0.520 61.833±0.704 2.291±0.005 97.05±0.141 50.330±0.000 20 0.156±0.000 47.531±0.029 55.757±0.000 2.260±0.002 99.01±0.141 51.740±0.014 22 0.156±0.000 49.755±0.058 43.406±0.563 2.230±0.006 102.00±0.000 52.554±0.021 表 2 各因子间相关系数
Table 2. Correlation coefficients among factors
因素 X1 X2 X3 X4 X5 Y X1 1 -0.988 0.844 0.988 -0.971 -0.980 X2 -0.988 1 -0.892 -0.996 0.983 0.993 X3 0.844 -0.892 1 0.901 -0.840 -0.894 X4 0.988 -0.996 0.901 1 -0.972 -0.992 X5 -0.971 0.983 -0.840 -0.972 1 0.987 表 3 通径分析
Table 3. Path analysis
因素 X1 X2 X3 X4 X5 ri X1 -0.591* 0.9297 -0.1756 -0.4416 -0.7069 -0.9854 X2 0.5839 -0.941* 0.1855 0.4452 0.7156 0.9892 X3 -0.4988 0.8394 -0.208* -0.4027 -0.6115 -0.8816 X4 -0.5839 0.9372 -0.1874 -0.447* -0.7076 -0.9887 X5 0.5739 -0.9250 0.1747 0.4345 0.728* 0.9861 注:*为直接通径系数Pi,其余为间接通径系数Pij;下表同。 表 4 各因子间相关系数
Table 4. Correlation coefficients among factors
因素 X1 X2 X3 X4 X5 Y X1 1 -0.956 0.786 0.978 -0.946 -0.957 X2 -0.956 1 -0.905 -0.960 0.987 1 X3 0.786 -0.905 1 0.848 -0.924 -0.05 X4 0.978 -0.960 0.848 1 -0.972 -0.962 X5 -0.946 0.987 -0.924 -0.972 1 0.989 表 5 通径分析
Table 5. Path analysis
因子 X1 X2 X3 X4 X5 ri X1 -0.211* -0.8183 -0.0590 0.4743 -0.3226 -0.9366 X2 0.2017 0.856* 0.0679 -0.4656 0.3366 0.9966 X3 -0.1659 -0.7747 -0.075* 0.4113 -0.3151 -0.9194 X4 -0.2064 -0.8218 -0.0636 0.485* -0.3315 -0.9383 X5 0.1996 0.8448 0.0693 -0.4714 0.341* 0.9833 -
[1] 许亮, 荣祥, 燕云, 等.中国酸浆属植物药用资源研究[J].中国野生植物资源, 2009, 28(1):21-23. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYSZ200901006.htm [2] 张英蕾. 毛酸浆免疫活性物质的精制及评价[D]. 哈尔滨: 东北林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10225-2010242404.htm [3] 王文利. 毛酸浆果醋的工艺研究[D]. 长春: 吉林农业大学, 2012. [4] 李世燕, 田美荣, 李栋, 等.毛酸浆酒发酵工艺研究[J].农业科技与装备, 2013, 35(9):52-54. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJD201309023.htm [5] 郑立飞, 范展飞, 冯浩, 等.小麦产量因素对籽粒容重影响的通径分析[J].生物数学学报, 2015, 30(4):721-727. http://www.cnki.com.cn/Article/CJFDTOTAL-SWSX201504019.htm [6] 鲍若晗. 小白杏饮料的研制及加工和储藏过程中非酶褐变的研究[D]. 杭州: 浙江工商大学, 2012. http://d.wanfangdata.com.cn/Thesis/Y2070352 [7] 曹建康, 姜微波, 赵玉梅.果蔬采后生理生化实验指导[M].北京:中国轻工业出版社, 2009. [8] COHEN E, BIRK Y, MANNHEIM C H, et al. A rapid method to monitor quality of apple juice during thermal processing[J]. LWT-Food Science and Technology, 1998, 31(7-8):612-616. doi: 10.1006/fstl.1998.0385 [9] 杜丹丹, 李建科.Folin-Ciocalt比色法测定石榴皮多酚含量条件的优化[J].西北农林科技大学学报:自然科学版, 2011, 39(5):190-196. http://mall.cnki.net/magazine/article/XBNY201105032.htm [10] 徐娟娣, 刘东红.雪里蕻腌菜腌制过程中主要成分的动态变化研究[J].中国食品学报, 2013, 13(7):215-221. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSP201307053.htm [11] 全国食品工业标准化技术委员会. GB/T 12143-2008饮料通用分析方法[S]. 北京: 中国标准出版社, 2008. [12] 章银良.食品与生物试验设计与数据分析[M].北京:中国轻工业出版社, 2010. [13] 陈坚生, 杨幼慧, 蹇华丽, 等.荔枝酒贮藏过程中非酶褐变的因子解析[J].食品与发酵工业, 2010, 36(6):20-25. http://www.cnki.com.cn/Article/CJFDTOTAL-SPFX201006008.htm [14] PATRICK F, FRANÇOIS S, FRANÇOIS L, et al. Non-enzymatic browning and ascorbic acid degradation of orange juice subjected to electro reduction and electro-oxidation treatments[J].Innovative Food Science & Emerging Technologies, 2011, 12(4):491-498. http://www.academia.edu/12900121/Non-enzymatic_browning_and_ascorbic_acid_degradation_of_orange_juice_subjected_to [15] GIAMPIERO S, FRANCESCA L, MIRIAM D G, et al. Non enzymatic browning during cocoa roasting as affected by processing time and temperature[J].Journal of Food Engineering, 2016, 169(1):44-52. http://www.sciencedirect.com/science/article/pii/S0260877415003714 [16] BAŞAK Ö, FERYAL K, HANDE S E. Effect of storage on non-enzymatic browning reactions in carob pekmez[J].International Journal of Food Science and Technology, 2010, 45(4):751-757. doi: 10.1111/j.1365-2621.2010.02190.x [17] 连志超. 百香果汁的褐变研究[D]. 柳州: 广西工学院, 2012. [18] 罗昱, 徐素云, 李小鑫, 等.刺梨果汁储藏中非酶褐变原因解析[J].食品科技, 2014, 39(10):69-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ201410016.htm [19] 曲云卿, 张同刚, 刘威, 等.枸杞汁热处理过程中非酶褐变的研究[J].食品科技, 2015, 40(4):112-117. http://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ201504026.htm [20] SHINODA Y, MURATA M, HOMMA S, et al. Browning and decomposed products of model orange juice[J].Bioscience, Biotechnolohy, and Biochemistry, 2004, 68(3):529-536. doi: 10.1271/bbb.68.529