Optimization of Ethanol Extraction of Antibacterial Substances from Dictyophora indusial Fisscher
-
摘要: 以长裙竹荪抑菌物质的提取量和抑菌效果为指标,研究乙醇提取的长裙竹荪抑菌活性物质的最佳工艺。基于单因素试验结果,设计二次通用旋转组合试验,工艺的最优参数由回归方程分析确定。结果表明,长裙竹荪乙醇提取物对金黄色葡萄球菌Staphylococus aureus、苏云金芽孢杆菌Bacillus thuringiensis、大肠杆菌Escherichia coli、巨大芽孢杆菌Bacillus magaterium、鸡瘟沙门氏菌Salmonella pullorum、肠炎沙门氏菌Salmonella enteritidis、枯草芽孢杆菌Bacillus subrilis均有抑菌效果,其中对肠炎沙门氏菌的抑菌效果最好。各因子对竹荪抑菌物提取效果的影响作用为温度>时间>液固比,优化后的提取条件为提取时间1.5 h、提取温度72℃、液固比25:1。研究结果为竹荪抑菌物质工业化开发为食品天然防腐剂提供参考。Abstract: The ethanol extraction of antibacterial substances from Dictyophora indusial fisscher was optimized using the yield and efficacy of the antimicrobial extract as indicators. On basis of the single factor experimental result, a quadratic general rotary unitized design was applied to finalize the optimization for the process. A regression analysis on the data obtained indicated that the processing temperature exerted the greatest effected on the amount of the extract to be obtained, and it was followed by time and material/solvent ratio. The conditions rendering a maximized yield included a temperature of 72℃, a duration of 1.5 h, and a material/solvent ratio of 1/25. The resulting mushroom extract showed varying antimicrobial activities on Staphylococus aureus, Bacillus thuringiensi, Escherichia coli, Bacillus magaterium, Salmonella pullorum, Salmonella enteritidis, and Bacillus subrilis, with the strongest inhibition effect against S. enteritidis.The research results provide a reference for ntibaterial substances from D.indusial fisscher being developed national food preservative in the industrialization.
-
Key words:
- Dictyophora indusial fisscher /
- antibacterial substances /
- ethanol /
- extraction
-
表 1 因素水平及编码
Table 1. Factors and codes of experimental design
水平编码值 因子X X1时间
/hX2温度
/℃X3液固比/
(mL·g-1)+1.682 2.5 75 30:1 +1 2.1 73 28:1 0 1.5 70 25:1 -1 0.9 67 22:1 -1.682 0.5 65 20:1 水平间隔值△ 0.6 3 3:1 表 2 不同乙醇体积分数提取物的抑菌效果
Table 2. Extraction rate affected by ethanol usage (material/solvent ratio)
(单位/mm) 供试菌 不同乙醇体积分数的抑菌圈大小 0%(CK) 20% 40% 60% 80% 100% 金黄色葡萄球菌S. aureus 7.00±0.8564D 7.00 ±0.2412D 7.00 ±0.2154D 11.50 ±1.0320C 18.33 ±0.9574B 30.67 ±0.3547A 大肠杆菌E. coli 7.00 ±0.6574D 7.00 ±0.5468D 7.00 ±0.9654D 10.50 ±1.3245C 15.00 ±1.0354B 21.67 ±0.5784A 鸡瘟沙门氏菌S.pullorum 7.00 ±0.5489D 7.00 ±0.3542D 7.00 ±0.8634D 9.33 ±0.9542C 14.50 ±1.0321B 21.33 ±0.6987A 肠炎沙门氏菌S. enteritidis 7.00 ±0.6874D 7.00 ±0.5421D 7.00 ±0.5463D 12.50 ±0.3687C 18.67 ±1.0324B 32.50 ±1.6587A 巨大芽孢杆菌B. magaterium 7.00 ±0.6875D 7.00 ±0.2136D 7.00 ±0.3542D 10.33 ±0.9857C 16.67 ±0.3547B 20.33 ±1.9870A 苏云金芽孢杆菌B. thuringiensis 7.00 ±0.5675D 7.00 ±0.8654D 7.00 ±0.9654D 9.50 ±0.6547C 13.33 ±0.9547B 18.33 ±1.9254A 枯草芽孢杆菌B. subrilis) 7.00 ±0.5421D 7.00 ±0.3215D 7.00 ±0.2345D 11.33 ±0.9547C 17.50 ±0.3547B 21.67 ±1.9651A 注:① CK为无菌水;② 抑菌圈直径采用每组3个重复的平均值;③ 同行数据后不同大写字母表示1%显著水平。 表 3 二次通用旋转组合优化试验设计及试验结果
Table 3. Results of quadratic general rotary unitized design optimization
处理号 X1时间
/hX2温度
/℃X3液固比/
(mL·g-1)10 g中提取
物重/g1 1 1 1 1.973 2 1 1 -1 1.751 3 1 -1 1 1.509 4 1 -1 -1 1.631 5 -1 1 1 2.057 6 -1 1 -1 1.892 7 -1 -1 1 1.102 8 -1 -1 -1 1.087 9 -1.6818 0 0 1.284 10 1.6818 0 0 1.979 11 0 -1.6818 0 1.511 12 0 1.6818 0 2.238 13 0 0 -1.6818 1.585 14 0 0 1.6818 2.205 15 0 0 0 2.519 16 0 0 0 2.368 17 0 0 0 2.493 18 0 0 0 2.389 19 0 0 0 2.232 20 0 0 0 2.206 表 4 回归模型方差分析
Table 4. Analysis of variance on regression model
变异来源 平方和 自由度 均方 比值F P值 显著性 X1 0.4551 1 0.4551 15.7226 0.0027 ** X2 1.6125 1 1.6125 55.706 0.0001 ** X3 0.2218 1 0.2218 7.6614 0.0199 * X12 2.0983 1 2.0983 72.4892 0.0001 ** X22 1.0392 1 1.0392 35.9026 0.0001 ** X32 0.9667 1 0.9667 33.398 0.0002 ** X1X2 0.2993 1 0.2993 10.3384 0.0093 ** X1X3 0.0014 1 0.0014 0.0478 0.8313 X2X3 0.0528 1 0.0528 1.8243 0.2066 回归 3.5261 9 0.3918 F2=13.535 0.0003 ** 剩余 0.2895 10 0.0289 失拟 0.2059 5 0.0412 F1=2.462 0.1056 不显著 误差 0.0836 5 0.0167 总和 3.8156 19 注:F0.01(9, 10)=4.94;F0.05(5, 5)=5.05;**极显著水平(P<0.01);*显著水平(P<0.05)。 -
[1] 罗盛莲, 游霞, 丁聪聪, 等.长裙竹荪和棘托竹荪的抑菌作用及其化学成分研究[J].食品工业科技, 2012, 33(21): 70-73. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201221010.htm [2] HIROKAZU KAWAGISHI, DAISUKE JSHIYAMA, HIRONOBU MORI, et al.DictyopHorines A and B, Tow Stimulators of Ngfsynthesis From The Mushroom Dictyohpora Indusiata[J].PHytochemistry, 1997, 45(6):1203-1205. doi: 10.1016/S0031-9422(97)00144-1 [3] LU H N, PANG Y J, ZHAO Y, et al. Antimicrobial Effect of DictyopHora Indusiata Fisscher Fruitbody[J].Nat Prod Res Dev, 2011, 23:324-327, 303. [4] 王宏雨, 毛方华, 陈体强, 等.竹荪抗氧化物质超声波循环提取工艺[J].福建农业学报, 2012, 27(7):743-746. http://www.fjnyxb.cn/CN/abstract/abstract1956.shtml [5] 张静雯.竹荪的营养价值及食用方法[J].甘肃农业, 2011, (1):87-88. http://www.cnki.com.cn/Article/CJFDTOTAL-GSNY201101048.htm [6] 韩慧, 张刚, 郝景雯, 等.长裙竹荪抑菌作用研究[J].食品研究与开发, 2008, 29(5):129-131. http://www.cnki.com.cn/Article/CJFDTOTAL-SPYK201010006.htm [7] 邓超, 付海田, 谷鹏, 等.长裙竹荪子实体乙醚和乙酸乙酯提取物的化学组成分析及抑菌活性研究[J].食品工业科技, 2014, 35(22):128-134. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201422033.htm [8] 包亚妮, 董建青, 贺文浩, 等.二次通用旋转组合设计法优化超临界CO2萃取栀子油的工艺研究[J].中国粮油学报, 2011, 26(5):66-70. [9] EVA G O, ANTOMIO J E, PILAR R. Molecular weight distribution of polysaccharides from edible seaweeds by highperformance size-exclusion chromatography (HPSEC)[J]. Talanta, 2012, 93: 153-159. doi: 10.1016/j.talanta.2012.01.067 [10] 唐启义, 冯明光.实用统计分析及其数据处理系统[M].北京:科学出版社, 2002:159-163. [11] 梁英, 何雯娟, 韩鲁佳.二次回归正交旋转组合设计对黄芩多糖提取工艺的优化[J].食品科学, 2009, 30(24):104-107. doi: 10.3321/j.issn:1002-6630.2009.24.020 [12] 吴文龙, 杨萍, 何元广.牡蛎肉水煮液总氮与总糖的溶出规律研究[J].食品工业, 2014, (3):84-86. http://www.cnki.com.cn/Article/CJFDTOTAL-SPGY201403029.htm [13] 夏道宗, 于新芬, 马志杰.二次回归通用旋转设计优化土茯苓总黄酮的提取工艺[J].中华中医药学刊, 2009, 27(7):1460-1463. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYHS200907052.htm [14] 郝景雯, 张刚, 韩慧, 等.长裙竹荪乙醇提取工艺及抑菌作用研究[J].食品工业科技, 2008, 29(10): 123-124. http://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ200810034.htm