Cropping Information Acquisition from National High Temporal-and-spatial Resolution Satellite Imaging System
-
摘要: 在面向对象技术支持下,首先利用高空间分辨率ZY-3遥感影像提取农田地块专题信息;然后在地块边界控制下以地块对象为单元融入HJ-1及GF-1中分传感器的多时相光谱信息,获取作物生长关键期内的时间序列光谱特征;最后,结合不同作物的物候差异性规律构建作物种植信息提取模型,对甘蔗和水稻进行识别。结果表明,所有地类的总体分类精度为86.80%,Kappa系数为0.84,总体分类效果良好。甘蔗的制图精度和用户精度分别达到92.11%和90.91%,水稻的制图精度和用户精度分别达到88.89%和90.91%。说明协同利用国产卫星的高空间和高时间分辨率影像数据提取作物种植信息确实可行,可作为作物种植面积和种植结构的精细化、快速调查方法。Abstract: Supported by the object-oriented technology, information on sugarcane and rice fields were acquired from the high temporal-and-spatial resolution ZY-3 remote sensing images. Using the crop plots as the objects, the multi-temporal spectral signatures from HJ-1 and GF-1 sensors were integrated, and the time series spectrum signatures at critical growth points were captured. Based on them, the cropping models showing phenology differences on selected features of sugarcane and rice fields were constructed. The overall classification accuracy of the models was 86.80%, the Kappa coefficient approximately 0.84, and the overall classification effect desirable. The mapping accuracy and user accuracy for sugarcane reached 92.11% and 90.91%, respectively; and those for rice, 88.89% and 90.91%, respectively. It appeared that the national high temporal-and-spatial resolution satellite imaging system could provide adequate information for proper management on the planting area and structure for the crops.
-
Key words:
- cropping structure /
- remote sensing image /
- multi-temporal /
- spectral signature /
- sugarcane /
- rice
-
表 1 多源国产卫星影像信息
Table 1. National multi-source satellite imaging system
表 2 研究区分类误差矩阵
Table 2. Classification of error matrix
-
[1] 陈颖姝, 张晓春, 王修贵, 等.基于Landsat8 OLI与MODIS数据的洪涝季节作物种植结构提取[J].农业工程学报, 2014, 30(21):165-173. doi: 10.3969/j.issn.1002-6819.2014.21.020 [2] JAKUBAUSKAS M E, LEGATES D R, KASTENS J H. Crop identification using harmonic analysis of time-series AVHRR NDVI data[J].Computers and Electronics in Agriculture, 2002, 37(1/2/3):127-139. https://www.researchgate.net/profile/Mark_Jakubauskas/publication/222411408_Crop_identification_using_harmonic_analysis_of_time-series_AVHRR_NDVI_data/links/0fcfd51001a7d3917e000000.pdf [3] URNER M D, CONGALTON R G. CIassification of multi-temporal SPOT-XS satellite data for mapping rice fields on a west african floodplain[J].Int J Remote Sensing, 1998, 19(1):21-41. doi: 10.1080/014311698216404 [4] 李峰, 王昊, 秦泉, 等.基于HJ-1 CCD影像的玉米种植面积估算研究[J].山东农业科学, 2016, 48(2):138-142. http://www.cnki.com.cn/Article/CJFDTOTAL-AGRI201602033.htm [5] 贺鹏, 徐新刚, 张宝雷, 等.基于多时相GF-1遥感影像的作物分类提取[J].河南农业科学, 2016, 45(1):152-159. http://www.cnki.com.cn/Article/CJFDTOTAL-HNNY201601035.htm [6] 边金虎, 李爱农, 王少楠, 等.基于MODIS NDVI的Landsat TM影像地形阴影区光谱信息恢复方法研究[J].遥感技术与应用, 2016, 31(1):12-22. http://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201601002.htm [7] 蔡天净, 唐瀚.Savitzky-Golay平滑滤波器的最小二乘拟合原理综述[J].数字通信, 2011, (1):63-68. http://www.cnki.com.cn/Article/CJFDTOTAL-SZTX201101022.htm [8] 周辉, 王卫东, 李星敏, 等.基于长时间序列NDVI的山西省耕地复种指数遥感监测分析[J].干旱地区农业研究, 2014, 32(3):189-195. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201403033.htm [9] 陈刘凤, 林开平, 胡宝清, 等.基于Landsat8_OLI数据的甘蔗种植面积监测[J].南方农业学报, 2015, 46(11):2068-2072. doi: 10.3969/j:issn.2095-1191.2015.11.2068 [10] 胡琼, 吴文斌, 宋茜, 等.农作物种植结构遥感提取研究进展[J].中国农业科学, 2015, 48(10):1900-1914. doi: 10.3864/j.issn.0578-1752.2015.10.004 [11] 王久玲, 黄进良, 王立辉, 等.面向对象的多时相HJ星影像甘蔗识别方法[J].农业工程学报, 2014, 30(11):145-151. doi: 10.3969/j.issn.1002-6819.2014.11.018 [12] 刘佳, 王利民, 杨福刚, 等.基于HJ时间序列数据的农作物种植面积估算[J].农业工程学报, 2015, 31(3):199-206. http://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201503026.htm