Discovery and Mechanisms of DNA Interference
-
摘要: 与体内某一基因相同的DNA序列可特异性抑制细胞内靶标基因的表达,这种现象称之为DNA干扰(DNAi)。DNAi是随着转录后基因沉默现象而在烟草属植物上被发现,之后在一些动植物及其细胞上也被发现。在原核生物中也存在DNAi现象,且原核生物的Ago在体外也能实现DNAi。原核生物DNAi的机理主要是Ago以DNA为向导切割DNA或RNA,而真核生物可能是基因转录后抑制、基因组甲基化和启动子结合的转录抑制等。本文还对DNAi的进一步研究和应用进行了讨论和展望。Abstract: DNA fragment introduced into cells can specifically inhibit the expression of homologous gene, which is identified as DNA interference (DNAi). DNAi was discovered with the events of post-transcriptional gene silencing in tobacco, and subsequently explored in other plants and animals. DNAi was present in prokaryotes and in vitro DNAi was also achieved by Ago proteins from prokaryotes. The mechanism of DNAi in prokaryotes is mostly that Ago proteins are complexed with small DNA guide to cleave DNA or RNA. Post-transcriptional gene silencing, genome methylation and transcriptional repression of promoter binding might be also covered in the mechanisms of DNAi in eukaryotes. In addition, the further research and application of DNAi were discussed and prospected.
-
Key words:
- DNA interference /
- gene silencing /
- ago protein
-
表 1 生物中已发现的DNAi
Table 1. DNAi in different species
生物 基因 片段长度 区域 片段修饰 效果 烟草[5-7]
Nicotiana benthamianaGFP、Nia、CHN cDNA - - 荧光丧失、基因抑制 铁线蕨[8]
Adiantum capillus-venerisAcPHOT2 cDNA - - 避光性丧失 水蕨[9]
Ceratopteris richardiiCrChlI、CrFtsZ cDNA - - 叶绿素合成受阻、叶绿体发育受阻 啮齿动物成纤维细胞[10]
Rat-1pro-α1(1) DNA 启动子、外显子、内含子 - 抑制基因表达 人胰腺癌细胞[12]
Panc-lK-ras、GFP cDNA - - 抑制基因表达、荧光丧失 大肠杆菌[17]
E. coliLet-7 13~25 nt - 5′磷酸化 质粒开环或线性化 尾海鞘[13]
Oikopleura dioicaAChE、Zic-like1、
Brachyury大于100 bp
dsDNA5′UTR、外显
子、内含子- 尾部畸形、乙酰胆碱酯酶活性丧失、感观功能丧失 斑马鱼[16]
Danio reriofabp11a、ta 22 nt 编码区 5′磷酸化、5′羟基化 眼睛发育畸形、尾发育畸形 -
[1] OGONI C. Homology-dependent gene silencing mechanisms in fungi[J]. Annual Reviews in Microbiology, 2001, 55(1): 381-406. doi: 10.1146/annurev.micro.55.1.381 [2] MEYER P, SAEDLER H. Homology-dependent gene silencing in plants[J]. Annual review of plant biology, 1996, 47(1): 23-48. doi: 10.1146/annurev.arplant.47.1.23 [3] VAYSSIÉ L, VARGAS M, WEBER C, et al. Double-stranded RNA mediates homology-dependant gene silencing of γ-tubulin in the human parasite Entamoeba histolytica[J]. Molecular and biochemical parasitology, 2004, 138(1): 21-28. doi: 10.1016/j.molbiopara.2004.07.005 [4] JENSEN S, GASSAMA M P, HEIDMANN T. Taming of transposable elements by homology-dependent gene silencing[J]. Nature genetics, 1999, 21(2): 209-212. doi: 10.1038/5997 [5] BAUM J A, BOGAERT T, CLINTON W, HECK G R, et al. Control of coleopteran insect pests through RNA interference[J]. Nature Biotechnology, 2007, 25 (11), 1322-1326. doi: 10.1038/nbt1359 [6] HAMMOND S M, CAUDY A A, HANNON G J. Post-transcriptional gene silencing by double-stranded RNA[J]. Nature Reviews Genetics, 2001, 2(2): 110-119. doi: 10.1038/35052556 [7] VOINNET O, VAIN P, ANGELL S, et al. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA[J]. Cell, 1998, 95(2): 177-187. doi: 10.1016/S0092-8674(00)81749-3 [8] PALAUQUI J C, BALZERGUE S. Activation of systemic acquired silencing by localised introduction of DNA[J]. Current Biology, 1999, 9(2): 59-66. doi: 10.1016/S0960-9822(99)80016-5 [9] CRETE P, LEUENBERGER S, IGLESIAS V A, et al. Graft transmission of induced and spontaneous post-transcriptional silencing of chitinase genes[J]. Plant Journal, 2001, 28(5): 493-501. doi: 10.1046/j.1365-313X.2001.01171.x [10] KAWAI-TOYOOKA H, KURAMOTO C, ORUI K, et al. DNA Interference: a Simple and Efficient Gene-Silencing System for High-Throughput Functional Analysis in the Fern Adiantum[J]. Plant and Cell Physiology, 2004, 45(11): 1648-1657. doi: 10.1093/pcp/pch186 [11] RUTHERFORD G, TANURDZIC M, HASEBE M, et al. A systemic gene silencing method suitable for high throughput, reverse genetic analyses of gene function in fern gametophytes[J]. BMC Plant Biology, 2004, 4(1):6. doi: 10.1186/1471-2229-4-6 [12] BAHRAMIAN M B, ZARBL H. Transcriptional and posttranscriptional silencing of rodent alpha1(I) collagen by a homologous transcriptionally self-silenced transgene[J]. Molecular Cell Biology, 1999, 19(1): 274-283. doi: 10.1128/MCB.19.1.274 [13] 任新瑜, 梁智勇, 师晓华, et al.同源无启动子DNA片段抑制人胰腺癌细胞株整合基因的表达[J].中华病理学杂志, 2007, 36(8):539-543. http://www.cnki.com.cn/Article/CJFDTOTAL-ZHBL200708011.htm [14] 任新瑜. 同源无启动子DNA片段对人胰腺癌细胞外源性整合基因及内源性基因的序列特异性抑制[D]. 北京: 中国医学科学院和中国协和医科大学, 2007. [15] OMOTEZAKO T, ONUMA T A, NISHIDA H. DNA interference: DNA-induced gene silencing in the appendicularian Oikopleura dioica[J]. Proceedings of the Royal Society B-Biological Sciences, 2015, 282(1807): doi.org/10.1098/rspb.2015.0435. http://www.ncbi.nlm.nih.gov/pubmed/25904672 [16] GAO F, SHEN X Z, JIANG F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nature Biotechnology, 2016: doi:10.1038/nbt.3547. [17] QI J, DONG Z, SHI Y, et al. NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish[J]. Cell Research, 2016, 26(12): 1349-1352. doi: 10.1038/cr.2016.134 [18] SUNGHYEOK Y, TAEGEUN B, KYOUNGMI K, et al. DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute[J]. bioRxiv, 2017: doi.org/10.1101/101923. [19] SWARTS D C, JORE M M, WESTRA E R, et al. DNA-guided DNA interference by a prokaryotic Argonaute[J]. Nature, 2014: 507(7491): 258. doi: 10.1038/nature12971 [20] OLOVNIKOV I, CHAN K, SACHIDANANDAM R, et al. Bacterial argonaute samples the transcriptome to identify foreign DNA[J]. Molecular Cell, 2013, 51(5): 594-605. doi: 10.1016/j.molcel.2013.08.014 [21] RASHID U J, PATEROK D, KOGLIN A, et al. Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function[J]. Journalof Biological Chemistry, 2007, 282(18): 13824-13832. doi: 10.1074/jbc.M608619200 [22] YUAN Y R, PEI Y, MA J B, et al. Crystal structure of A.aeolicus argonaute, a site-specific DNA-guided endoribo-nuclease, provides insights into RISC-mediated mRNA cleavage[J]. Molecular Cell, 2005, 19(3): 405-419. doi: 10.1016/j.molcel.2005.07.011 [23] WANG Y, SHENG G, JURANEK S, et al. Structure of the guide-strand-containing argonaute silencing complex[J]. Nature, 2008, 456(7219): 209-213. doi: 10.1038/nature07315 [24] Swarts D C, Szczepaniak M, Sheng G, et al. Autonomous Generation and Loading of DNA Guides by Bacterial Argonaute[J]. Molecular Cell, 2017, 65(6): 985-998. e6. doi: 10.1016/j.molcel.2017.01.033 [25] SWARTS D C, HEGGE J W, HINOJO I, et al. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA[J]. Nucleic Acids Research, 2015, 43(10): 5120-5129. doi: 10.1093/nar/gkv415 [26] ASHE H L, MONKS J, WIJGERDE M, et al. Intergenic transcription and transinduction of the human beta-globin locus[J]. Genes and Development, 1997, 11(19): 2494-2509. doi: 10.1101/gad.11.19.2494 [27] HELLEDAY T, ARNAUDEAU C, JENSSEN D. Effects of carcinogenic agents upon different mechanisms for intragenic recombination in mammalian cells[J]. Carcinogenesis, 1998, 19(6): 973-978. doi: 10.1093/carcin/19.6.973 [28] MOREL J B, MOURRAIN P, BECLIN C, et al. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis[J]. Current Biology, 2000, 10(24): 1591-1594. doi: 10.1016/S0960-9822(00)00862-9 [29] FURNER I J, SHEIKH M A, COLLETT C E. Gene silencing and homology-dependent gene silencing in Arabidopsis: genetic modifiers and DNA methylation[J]. Genetics, 1998, 149(2): 651-662. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460166/ [30] ROCHA P S C F, SHEIKH M, MELCHIORRE R, et al. The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for an S-adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing[J]. The Plant Cell, 2005, 17(2): 404-417. doi: 10.1105/tpc.104.028332