Effect of Simulated Acid Rain on Permeability of Tomato Cell Membrane
-
摘要: 采用番茄品种‘倍盈’为材料,运用人工模拟酸雨研究不同强度酸雨(pH3.0、pH3.5、pH5.6)胁迫对‘倍盈’叶片细胞质膜透性的影响。结果表明:酸雨处理使番茄叶片超氧化物歧化酶(SOD)的活性、丙二醛(MDA)的含量及细胞质膜透性显著上升,可溶性蛋白的含量显著下降。胁迫停止后SOD的活性逐渐下降,停止胁迫后20 d,pH3.0与pH3.5处理均显著低于pH5.6(CK);可溶性蛋白的含量pH3.0与pH3.5多呈现波动性的上升,至停止胁迫后15 d,pH3.0、pH3.5与pH5.6处理之间无显著差异。丙二醛的含量则呈现波动式上升,停止胁迫后20 d,pH3.5与pH5.6差异不显著,而pH3.0显著高于pH5.6;细胞质膜透性pH3.5表现先上升后下降的现象,pH3.0表现下降趋势的现象,但至停止胁迫后20 d,pH3.0、pH3.5与pH5.6之间无显著差异;pH值3.0和pH值3.5的叶片伤害率均随时间的延长而呈现下降的趋势,至停止胁迫后10 d以后基本处于一个较稳定的水平;从番茄植株的外部形态来看,pH3.0酸雨处理在胁迫停止后20 d,仍呈现叶片黄化、枯萎状态,说明pH3.0酸雨胁迫产生不可逆的伤害;而pH3.5酸雨胁迫处理下‘倍盈’表现出较好的自我修复能力。Abstract: Effects of simulated acid rain(SiAR) at pH 3.0 and 3.5, along with pH 5.6 (CK), on the membrane permeability of cells in leaves of Brothin tomato were investigated. The results showed that the SOD activity, malondialdehyde (MDA) content, and cell membrane permeability of the tomato leaves increased significantly after SiAR treatments. But, the soluble protein decreased significantly due to the treatments. SOD activity in the leaves declined gradually once the stress was stopped.It became significantly lower than that of control, 20ds after the cessation. MDA content in the leaves treated by pH3.5 SiAR fluctuated with a slight upward trend that was not significantly different from that of control. On the other hand, the pH3.0 treatment produced a significant difference between them after 20ds of removal of the stress. The pH 3.5 treatment caused an initial rise on the membrane permeability and follo wed by a decline, while pH3.0 gave a continual downward trend. However, 20ds after stress stopping, there were no significant differences on the permeability between either of them and control.The soluble protein content in the leaves had an up-and-down insignificant increasing tendency by SiAR treatments in 15 days after the treatment. The injuries on the leaves caused by SiAR declined following the treatments, and reached a constant level 10ds after the stress ceased. Judging by the appearance of the tomato plants, the leaf yellowing and withering persisted 20ds after cessation of the pH3.0 treatment, indicating that an irreversible damage had occurred to the plants by SiAR. In contrast, the tomato plants seemed capable of self-rejuvenation after a SiAR stress at pH3.5.
-
Key words:
- acid rain stress /
- tomato /
- cell membrane permeability /
- superoxide dismutase /
- malondialdehyde
-
图 1 酸雨处理番茄出现症状时的外部形态特征
注:A为pH5.6,B为pH3.5,C为pH3.0,图 2同。
Figure 1. Characteristic symptoms on tomato leaves under SiAR stress
表 1 模拟酸雨胁迫对番茄叶片SOD活性的影响
Table 1. Effect of SiAR on SOD activity of tomato leaves
酸雨pH值 SOD活性/(U·g -1·min -1) 0 d 5 d 10 d 15 d 20 d 5.6(CK) 65.22±0.87c 60.479±5.923a 54.151±2.980a 58.904±2.540a 59.854±3.451a 3.5 81.985±0.96b 54.191±1.714b 52.636±2.356a 48.925±2.884b 42.420±1.380b 3.0 85.141±1.07a 50.039±6.901c 47.273±1.152c 44.002±1.977c 41.441±2.071b 注:同列数据后不同小写字母表示差异显著(P < 0.05),下同。 表 2 模拟酸雨胁迫对番茄叶片可溶性蛋白含量的影响
Table 2. Effect of SiAR on soluble proteincontent of tomato leaves
酸雨pH值 可溶性蛋白含量/(μg·mL-1) 0 d 5 d 10 d 15 d 5.6(CK) 40.81±4.23a 39.21±4.28a 31.94±1.38b 42.23±0.03a 3.5 26.05±3.08b 38.68±4.64a 36.47±2.66a 40.66±2.16a 3.0 36.30±2.36ab 39.63±6.15a 26.01±2.23c 40.62±5.72a 表 3 模拟酸雨胁迫对番茄叶片MDA含量的影响
Table 3. Effect of SiAR on MDA content of tomato leaves
酸雨pH值 MDA含量/(μmoL·L-1) 0 d 5 d 10 d 15 d 20 d 5.6(CK) 0.39±0.20b 2.29±0.33a 1.33±0.33b 0.92±0.19b 1.48±0.21b 3.5 1.35±0.20a 2.50±0.53a 1.90±0.38a 1.18±0.93b 1.56±0.61b 3.0 1.74±0.86a 2.51±0.16a 2.24±0.34a 2.17±0.86a 2.31±0.53a 表 4 模拟酸雨胁迫对番茄叶片细胞膜的相对透性
Table 4. Effect of SiAR on cell membrane permeability of tomato leaves
酸雨pH值 细胞膜的相对透性/% 0 d 5 d 10 d 15 d 20 d 5.6(CK) 0.69±0.08 0.88±0.02 0.844±0.06 0.90±0.05 0.84±0.04 3.5 0.87±0.09* 0.91±0.01 0.88±0.04 0.91±0.01 0.87±0.05 3.0 0.94±0.04** 0.93±0.01* 0.89±0.05 0.93±0.01 0.88±0.03 注:*表示差异达到显著性水平(P < 0.05),**表示差异达到极显著水平(P < 0.01)。 -
[1] 许新辉, 郜洪文.中国南方酸雨的分布特征及其成因分析[J].四川环境, 2011, 30(4):135-139. http://www.cnki.com.cn/Article/CJFDTOTAL-SCHJ201104034.htm [2] 王文兴, 丁国安.中国降水酸度和离子浓度的时空分布[J].环境科学研究, 1997, 10(2):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-HJKX702.000.htm [3] 万玉山, 王皖蒙.中国酸雨污染现状成因分析及防治措施[J].安徽农业科学, 2010, 38(34):19420-19421, 19425. doi: 10.3969/j.issn.0517-6611.2010.34.072 [4] 齐泽民, 王玄德, 宋光煜.酸雨对植物影响的研究进展[J].世界科技研究与发展, 2004, 26(2):36-41. http://www.cnki.com.cn/Article/CJFDTOTAL-SJKF200402009.htm [5] 杨学春, 牟树森.酸雨和降尘对植物产量及汞含量的研究[J].西南农业大学学报, 1998, 20(2):165-169. http://www.cnki.com.cn/Article/CJFDTOTAL-XNND802.017.htm [6] 刘婷婷. 模拟酸雨胁迫下番茄叶片的基因差异表达研究[D]. 福州: 福建农林大学, 2010. [7] 商桑, 田丽波, 黄绵佳, 等.模拟酸雨对茄科3种蔬菜种子萌发的影响[J].植物研究, 2007, 27(4):494-499. http://www.cnki.com.cn/Article/CJFDTOTAL-MBZW200704024.htm [8] BISESSAR S, 孔再德.模拟酸雨对番茄细菌病斑的影响[J].农业环境与发展, 1987, (12):50. http://www.cnki.com.cn/Article/CJFDTOTAL-NHFZ198704023.htm [9] 杨志敏, 华筠, 王萍.模拟酸雨对若干种蔬菜生长和生理特性影响的研究[J].农业环境保护, 1994, (5):213-216, 241. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH405.004.htm [10] 王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2006:5. [11] 徐利利, 陈焱山, 张士权, 等.ABA对木樨科植物抗冻性影响的研究[J].现代农业科技, 2007, (15):8-9. doi: 10.3969/j.issn.1007-5739.2007.15.003 [12] 李迪, 唐璐, 周青.水稻种子萌发时酸雨对可溶性蛋白与脯氨酸含量的影响[J].安全与环境学报, 2008, (5):12-15. http://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ200805003.htm [13] 严重玲, 洪业汤, 杨先科, 等.酸雨胁迫下稀土元素对小麦的生物学效应[J].中国农业科学, 1998, (3):89-91. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK803.015.htm [14] 侯麟. 酸雨胁迫对白兰花生理特性的影响[D]. 成都: 四川农业大学, 2010. [15] 王涛, 张珊珊, 谢寅峰, 等.模拟酸雨胁迫对菲白竹生理特性的影响[J].东北林业大学学报, 2014, (11):17-21. doi: 10.3969/j.issn.1000-5382.2014.11.005