The Structure and Properties of Konjac Glucomannan Drug Carrier
-
摘要: 为了分析魔芋葡甘聚糖(KGM)作为药物载体材料的结构特征及性能关系,通过复配方法制成KGM/CMC-Na、KGM/SAA、KGM/CMC-Na/SAA药物载体,进行孔隙率、电镜表征等方面的分析,并采用红外光谱分析其稳定性。试验结果:KGM/SAA、KGM/CMC-Na的复配能够起到协同增效的作用;KGM/SAA比KGM/CMC-Na、KGM/SAA/CMC-Na更为稳定;KGM/SAA药物载体的孔隙率较高,为73.00%;KGM/SAA药物载体的粒径大约为0.31~0.38mm,大小分布较为均匀。结果表明KGM/CMC-Na、KGM/SAA、KGM/CMC-Na/SAA中KGM/SAA最适宜作为药物载体。Abstract: To analyze the structural characteristics and properties of Konjac Glucomannan (KGM) as drug carrier. Methods KGM/CMC-Na, KGM/SAA and KGM/CMC-Na/SAA drug carriers were prepared by complex method, and were analyzed with the porosity and electron microscopy. Infrared spectroscopy was used to analyze its stability. Results The combination of KGM/SAA and KGM/CMC-Na can play a synergistic effect; KGM/SAA is more stable than KGM/CMC-Na and KGM/SAA/CMC-Na; KGM/SAA is higher porosity, and its drug capacities is 73%; the particle size of KGM/SAA drug carrier is about 0.31~0.38mm, and uniform distribution. Conclusion KGM/SAA is the most suitable as drug carriers in three samples.
-
Key words:
- Konjac Glucomannan /
- Viscosity /
- Infrared Spectrum /
- Scanning Electron Microscope
-
图 5 复配物所制得的药物载体
注:A为KGM/SAA药物载体;B为KGM/SAA/CMC-Na药物载体。图 6同。
Figure 5. Drug carrier prepared by compound
-
[1] KHATAMIAN M, DIVBAND B, FARAHMAND-ZAHED F. Synthesis and characterization of Zinc (Ⅱ)-loaded Zeolite/Graphene oxide nanocomposite as a new drug carrier[J]. Materials Science & Engineering C, 2016, 66(1):251. [2] SNIGDHA K, SINGH B K, MEHTA A S, et al.Self-assembling N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine hydrogel as novel drug carrier[J]. International Journal of Biological Macromolecules, 2016, 93(ptB):1639-1646. [3] LIN W, HU Q, JIANG K, et al. A porphyrin-based metal-organic framework as A pH-responsive drug carrier[J]. Journal of Solid State Chemistry, 2016, 237(5):307-312. http://www.sciencedirect.com/science/article/pii/S0022459616300639 [4] WU L, ZHANG H, WU M, et al. Dual-templating synthesis of multi-shelled mesoporous silica nanoparticles as catalyst and drug carrier[J]. Microporous and Mesoporous Materials, 2016, 228(3):318-328. https://www.researchgate.net/publication/299495348_Dual-templating_synthesis_of_multi-shelled_mesoporous_silica_nanoparticles_as_catalyst_and_drug_carrier [5] 郑梅霞, 朱育菁, 刘波, 等.地毯草黄单胞菌产黄原胶与魔芋胶复配胶的流变性[J].福建农业学报, 2016, (5):527-531. http://www.fjnyxb.cn/CN/abstract/abstract2935.shtml [6] 袁毅, 穆若郡, 杨丹, 等.魔芋葡甘聚糖/聚乙烯醇纳米纤维膜及其释药行为研究[J].高分子学报, 2017, (3):498-506. http://www.cnki.com.cn/Article/CJFDTOTAL-GFXB201703009.htm [7] 谢建华, 谢丙清, 庞杰, 等.魔芋葡甘聚糖与乳清蛋白的相互作用[J].食品科学, 2017, (5):98-103. doi: 10.7506/spkx1002-6630-201705016 [8] 谢建华, 谢丙清, 郭巧玲, 等.魔芋葡甘聚糖-乳清蛋白复合膜在琯溪蜜柚中的应用[J].食品科学技术学报, 2017, (1):76-81. doi: 10.3969/j.issn.2095-6002.2017.01.012 [9] TANG Y, MEI R, YANG S, et al. Hollow GdPO4:Eu3+ microspheres: Luminescent properties and applications as drug carrier[J]. Superlattices and Microstructures, 2016, 92(4):256-263. [10] BERIKKHANOVA K, OMARBAEV R, GULYAYEV A, et al. Red blood cell ghosts as promising drug carriers to target wound infections[J]. Medical Engineering and Physics, 2016, 38(9):877-884. doi: 10.1016/j.medengphy.2016.02.014 [11] 汪雪雁, 张钦发, 张艳.微细化处理玉米淀粉对糊化温度及黏度的影响[J].包装工程, 2017, (3):12-14. http://www.cnki.com.cn/Article/CJFDTOTAL-BZGC201703004.htm [12] ẢSA TUNÓU, GRẢSJÖ J, Alderborn G. Effect of intragranular porosity on compression behaviour of and drug release from reservoir pellets[J]. European Journal of Pharmaceutical Sciences, 2003, 19(5):333-344. doi: 10.1016/S0928-0987(03)00106-4 [13] 张慧敏, 李兆杰, 魏玮, 等.傅立叶变换红外光谱技术对6种致病性大肠埃希氏菌快速分型的研究[J].食品安全质量检测学报, 2017, (1):216-222. http://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ201701039.htm [14] 简文杰, 吴云辉, 甘纯玑.红曲红素的分子动力学模拟及其量化计算[J].计算机与应用化学, 2010, 27(3): 341-346. http://www.cnki.com.cn/Article/CJFDTOTAL-JSYH201003013.htm [15] 马晓飞, 于九皋.热塑性淀粉中氢键对其性能的影响[J].化学学报, 2004, 62(12): 1180-1184. doi: 10.3321/j.issn:0567-7351.2004.12.018