Diversity and Mercury-resistance of Actinomycetes in Tongren, Guizhou
-
摘要: 为探明贵州喀斯特重金属污染区域土壤放线菌多样性特征以及为其污染修复应用奠定基础,从贵州铜仁地区的25份土壤样品中,采用梯度稀释涂布法,利用3种处理方式、7种培养基分离放线菌;通过形态特征、16S rDNA基因序列分析结合生理生化特征鉴定放线菌;同时筛选重金属汞抗性菌株。结果从土样中共分离出56株典型放线菌菌株,经初步鉴定,分属于链霉菌属、孢囊链霉菌属、高温单孢菌属、线杆菌属、间孢囊菌属、诺卡氏菌属、小单孢菌属;其中链霉菌属放线菌占68%。筛选出了1株对汞有较高抗性(75 mg·L-1)的放线菌菌株,优良耐受菌株的最大抗性约85 mg·L-1,菌株经鉴定为枝链霉菌Streptomyces rameus。共分离出56株,分属于7个属的放线菌菌株;筛选出1株重金属汞高抗菌株,经鉴定为枝链霉菌。Abstract: Diversity and mercury-resistance of Actinomycetes in the soil polluted by heavymetals at Tongren karst regeions in Guizhou were studied to gain information for environmental recovery and bioremedies. Twenty-five soil samples were collected from the areas. Microorganisms were screened on 7 different culture media with gradient concentrations of mercury under 3 different treatments to isolate the resistant strains. Subsequently, the isolates were examined for their morphological, physiological and biological characteristics, and subjected to a 16S rDNA phylogenetic an alysis for further identification.As a result, 56 typical Actinomycetes belonging to Streptomyces, Streptosporangium, Thermomonospora, Actinobacillus, Intrasporangium, Nocardia, and Micromonospora were found to be resistant to mercury.Among them, 68% were Streptomyces with one particular strain showing a high mercury-resistance to survive under a 75 mg·L-1 up to 85 mg·L-1 mercury stress, which was identified to be Streptomyces rameus.
-
Key words:
- Actinomycetes /
- diversity /
- karst /
- 16S rDNA /
- mercury /
- Streptomyces rameus
-
表 1 重铬酸钾对放线菌分离的影响
Table 1. Effect of potassium dichromate on separating strains of Actinomycetes
培养基 重铬酸钾 对照组 总菌落数/×105 放线菌数/×105 杂菌率/% 总菌落数/×105 放线菌数/×105 杂菌率/% 高氏1号 1.2 1.12 6.8 0.7 0.51 27.5 LNMS 3.1 2.84 8.5 3.5 1.23 65 表 2 不同分离培养基对放线菌影响
Table 2. Effect of culture media on separating strains of Actinomycetes
培养基种类 放线菌数量/×105 放线菌种类 种类数 高氏1号培养基 1.35 孢囊链霉菌属;灰红紫类群;灰褐类群;粉红孢类群;黄色类群;烬灰类群 6 LNMS培养基 5.2 高温单孢菌属;烬灰类群;粉红孢类群;金色类群 4 海藻糖-脯氨酸培养基 0.95 线杆菌属;粉红孢类群;金色类群;烬灰类群 4 改良高氏二号培养基 1.1 线杆菌属;间孢囊菌属;灰褐类群;粉红孢类群 4 改良脯氨酸培养基 2.7 粉红孢类群;小单孢菌属;金色类群 3 ZSSE培养基 2.1 诺卡氏菌属;小单孢菌属;金色类群 3 NA浸出液培养基 0.76 黄色类群;灰红紫类群;灰褐类群;金色类群;烬灰类群;小单孢菌属 6 表 3 菌株WS1605生理生化特征
Table 3. Physiological and biochemical characteristics of WS1605
项目 结果 柠檬酸盐试验 - 硝酸盐还原 - 淀粉水解 + 牛奶分解 + 明胶液化 - 蔗糖 + 果糖 + 肌醇 + 鼠李糖 + 山梨醇 - 柠檬酸钠 - 酪氨酸酶 + L-阿拉伯糖 - 半乳糖 + 注:“+”表示阳性;“-”表示阴性。 -
[1] 彭晚霞, 王克林, 宋同清, 等.喀斯特脆弱生态系统复合退化控制与重建模式[J].生态学报, 2008, 28(2): 811-820. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB200802044.htm [2] 宋敏, 邹冬生, 杜虎, 等.不同土地利用方式下喀斯特峰丛洼地土壤微生物群落特征[J].应用生态学报, 2013, 24(9): 2471-2478. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201309012.htm [3] KUMAR V, BHARTI A, GUPTA V, et al. Actinomycetes from solitary wasp mud nest and swallow bird mud nest: isolation and screening for their antibacterial activity[J]. World journal of microbiology & biotechnology, 2012, 28(3): 871-880. [4] PASSARI A, MISHRA V, SAIKIA R, et al. Isolation, abundance and phylogenetic affiliation of endophytic actinomycetes associated with medicinal plants and screening for their in vitro antimicrobial biosynthetic potential[J]. Frontiers in microbiology, 2015, (6): 273-278. doi: 10.3389/fmicb.2015.00273/full [5] 姚斌, 尚鹤, 刘成志, 等.废弃柴河铅锌矿区土壤微生物特征调查研究[J].林业科学研究, 2006, 19(3): 400-403. http://www.cnki.com.cn/Article/CJFDTOTAL-LYKX200603025.htm [6] 李慧芬, 林雁冰, 王娜娜, 等.一株Zn抗性菌株的筛选鉴定及吸附条件优化[J].环境科学学报, 2010, 30(11): 2189-2196. http://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201011006.htm [7] HAMEDI J, DEHHAGHI M, MOHAMMDIPANAH F. Isolation of extremely heavy metal resistant strains of rare actinomycetes from high metal content soils in Iran[J]. International Journal of Environmental Research, 2015, 9(2): 475-480. [8] POLTI M, APARICIO J, BENIMELI C, et al. Simultaneous bioremediation of Cr (Ⅵ) and lindane in soil by actinobacteria[J]. International Biodeterioration & Biodegradation, 2014. 88: 48-55. http://www.sciencedirect.com/science/article/pii/S0964830513004411 [9] 黄代宽, 董泽琴, 刘永霞, 等.典型区域历史遗留土壤污染问题及其综合防治研究[J].环境科学与管理, 2015, 40(5): 54-58. http://www.cnki.com.cn/Article/CJFDTOTAL-BFHJ201505015.htm [10] 彭云霞, 姜怡, 段淑蓉, 等.稀有放线菌的选择性分离方法[J].云南大学学报:自然科学版, 2007, 29(1): 86-89. http://www.cnki.com.cn/Article/CJFDTOTAL-WSWT200601028.htm [11] ZHANG J, ZHANG L. Improvement of an isolation medium for actinomycetes[J]. Modern Applied Science, 2011, 5(2): 124-127. [12] 阮继生.放线菌分类基础[M].北京:科学出版社, 1992. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [13] 中国科学院微生物研究所.链霉菌鉴定手册[M].北京:科学出版社, 1975. http://www.cnki.com.cn/Article/CJFDTOTAL-SYQY201603027.htm [14] PEREIRA S, LIMA A, FIGUEIRA E. Screening possible mechanisms mediating cadmium resistance in Rhizobium leguminosarum bv. viciae isolated from contaminated Portuguese soils[J]. Microbial ecology, 2006, 52(2): 176-186. doi: 10.1007/s00248-006-9057-5 [15] 安德荣, 慕小倩, 刘翠娟, 等.土壤拮抗放线菌的分离和筛选[J].微生物学杂志, 2002, 22(5): 1-3. http://www.cnki.com.cn/Article/CJFDTOTAL-WSWX200205000.htm [16] 马爱爱, 徐世健, 敏玉霞, 等.祁连山高山植物根际土放线菌生物多样性[J].生态学报, 2014, 34(11): 2016-2028. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201411014.htm [17] 曾艳, 陈强, 王敏, 等.一株高抗汞细菌的分离鉴定及其抗性基因的克隆与表达[J].微生物学报, 2009, 49(12): 1628-1633. doi: 10.3321/j.issn:0001-6209.2009.12.013 [18] XU H, CAO D, TIAN Z. Isolation and identification of a mercury resistant strain[J]. Environment Protection Engineering, 2012, 38(4): 67-74.