Responses of Alternanthera philoxeroides and Agasicles hygrophila to Elevated Atmospheric CO2
-
摘要: 为明确CO2含量升高对入侵杂草空心莲子草及其天敌莲草直胸跳甲的影响,测定了3种不同CO2含量(420、550、750 μL·L-1)对空心莲子草生长特性和体内营养物质、莲草直胸跳甲幼虫体重增长和成虫取食选择性的影响。结果表明:CO2含量升高条件下,空心莲子草生长速度加快,种植42 d后,550、750 μL·L-1 2个高含量CO2条件下空心莲子草的株高分别达35.60 cm和40.04 cm,分别为对照组(当前大气CO2条件420 μL·L-1下)空心莲子草株高(19.83 cm)的1.75倍和2倍;CO2含量升高,空心莲子草叶片SPAD值显著增加,光合作用能力增强;叶片的可溶性总糖含量升高,含氮化合物(蛋白质、总氨基酸)含量降低,叶片的碳氮比增加,单宁酸含量降低。取食高含量CO2条件下培育的空心莲子草,天敌莲草直胸跳甲幼虫的体重增加速度较对照组显著加快;同期羽化的莲草直胸跳甲雌、雄成虫均偏好取食高CO2含量(750 μL·L-1)条件下培育的空心莲子草。Abstract: The growth characteristics of alligator weed, Alternanthera philoxeroides, and the larvae development and adult feeding habit of Agasicles hygrophila under elevated atmospheric CO2 were investigated.Three CO2 concentrations, i.e., 420, 550 and 750 μL·L-1, were applied in a closed chamber for the experiment.It was found that A.philoxeroides grew faster at higher CO2 concentrations.On the 42nd day, the heights of the weeds were 35.60 cm and 40.04 cm at 550 μL·L-1 CO2 and 750 μL·L-1 CO2, respectively.As compared to that of control (19.83 cm), the weed height was 1.75 times higher under 550 μL·L-1 CO2, and two times higher under 750 μL·L-1 CO2.In an elevated CO2 environment, the leaves of the weeds showed increases on the SPAD, photosynthesis, soluble sugars, and C/N ratio, but decreases on the nitrogen-containing compounds (such as, proteins and amino acids) and the tannin content.When fed on A.philoxeroides under elevated CO2, the weight of A.hygrophila larvae was higher than that of control, while the emerged adults, male or female, appeared to prefer A.philoxeroides grown under 750μL·L-1 CO2.
-
图 1 不同CO2处理对空心莲子草株高的影响
注:不同小写字母表示处理间差异显著 (P<0.05),图 2同。
Figure 1. Plant height of A. philoxeroides under varied atmosheric CO2 concentrations
表 1 不同CO2处理的空心莲子草叶片营养物质含量的差异
Table 1. Nutritional content in leaves of A. philoxeroides grown under varied atmosheric CO2concentrations
营养物质 不同CO2处理空心莲子草的营养物质含量/(μL·L-1) 420 550 750 可溶性总糖/ (mg·g-1) 6.70±0.49b 12.31±1.08a 12.48±1.03a 蛋白质/ (mg·g-1) 74.48±7.10a 56.95±3.37b 61.71±1.88ab TSCs : Protein 0.09±0.01b 0.22±0.03a 0.20±0.02a 总氨基酸/(μmol·mg-1) 3.54±0.33a 3.18±0.37a 2.49±0.31b 单宁酸/ (mg·g-1) 1.57±0.02a 1.40±0.02b 1.37±0.03b 注:同行数据后不同小写字母表示差异显著 (P<0.05),表 2~3同。 表 2 取食不同CO2处理的空心莲子草叶片的幼虫体重变化
Table 2. Weight variation (mg) of A. hygrophila larvae fed on A. philoxeroides grown under varied atmosheric CO2 concentrations
项目 不同CO2处理的幼虫体重/mg 420 μL·L-1 n 550 μL·L-1 n 750 μL·L-1 n 初始体重 0.13±0.01ab 270 0.12±0.01b 270 0.16±0.01a 270 最终体重 5.64±0.10c 215 6.25±0.13b 201 6.83±0.22a 170 体重变化 5.51±0.10c - 6.13±0.13b - 6.67±0.22a 表 3 不同CO2处理的莲草直胸跳甲幼虫的体重变化
Table 3. Daily weight change of A. hygrophila larvar under varied atmosheric CO2 concentrations
饲喂天数/d 不同CO2处理的幼虫的每日体重/mg 420 μL·L-1 n 550 μL·L-1 n 750 μL·L-1 n 1 0.13±0.01ab 270 0.12±0.01b 270 0.16±0.01a 270 2 0.38±0.02b 251 0.34±0.02b 241 0.46±0.03a 218 3 0.54±0.01ab 248 0.54±0.01b 230 0.57±0.01a 209 4 0.85±0.05b 241 0.81±0.03b 223 1.09±0.11a 198 5 1.93±0.09a 236 1.89±0.04a 215 2.10±0.09a 191 6 3.18±0.20ab 231 2.82±0.05b 211 3.60±0.32a 181 7 5.64±0.10c 215 6.25±0.13b 201 6.83±0.22a 170 表 4 初羽化成虫选择性取食不同CO2条件下生长的空心莲子草
Table 4. Feeding preference of emerged adult A. hygrophila on A. philoxeroides grown under varied atmospheric CO2 concentrations
项目 不同CO2处理成虫取食面积 (mm2·d-1·头-1) 420 μL·L-1 n 550 μL·L-1 n 750 μL·L-1 n 雌虫 22.20±3.66abA 83 12.42±1.72bA 83 31.61±3.99aA 83 雄虫 16.42±2.08bA 97 8.34±0.73cA 97 26.09±3.11aA 97 注:同行数据后不同小写字母表示差异达显著 (P<0.05) 水平;同列数据后不同大写字母表示差异达显著 (P<0.05) 水平。 -
[1] VOGT G B, MCHURIC J U, CUSHMAN A D. Probable evolution and morphological variation in South American Disonychine flea beetles (Colcoptera: Chrysomelidae) and their Amaranthaccous hosts[M]. USDA Technical Bulletin, 1979:148. [2] 马瑞燕. 空心莲子草天敌——莲草直胸跳甲引进中国后的生态适应性研究[D]. 北京: 中国农业科学院, 2001. [3] BUTCHART S H M, WALPOLE M, COLLEN B, et al. Global Biodiversity: Indicators of Recent Declines[J]. Science, 2010, 328: 1164-1168. doi: 10.1126/science.1187512 [4] SAINTY G, MCCORKELLE G, JULIEN M H. Control and spread of alligator weed, Alternanthera philoxeroides, in Australia: lessons for other regions[J]. Wetlands Ecology and Management, 1998, (5): 195-201. [5] CLEMENTS D, DUGDALE T M, HUNT T D. Growth of aquatic alligator weed (Alternanthera philoxeroides) over 5 years in south-east Australia[J]. Aquatic Invasions, 2011, (6): 77-82. http://www.aquaticinvasions.net/2011/AI_2011_6_1_Clements_etal.pdf [6] MASSODI A, KHAN F A. Invasion of alligator weed (Alternanthera philoxeroides) in Wular Lake, Kashmir, India[J]. Aquatic Invasions, 2012, (7): 143-146. http://www.aquaticinvasions.net/2012/AI_2012_1_Masoodi_Khan.pdf [7] INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE. Climate Change 2013: The Physical Science Basis. Summary for Policy Makers. Working Group I to the Fifth Assessment[C]//Report of the Intergovernmental Panel on Climate Change.IPCC Secretariat, WMO, Geneva, Switzerland, 2013:3. [8] PE UELAS J, CASTELLS E, JOFFRE R, et al. Carbon-based secondary and structural compounds in Mediterranean shrubs growing near a natural CO2 spring[J]. Global Change Biology, 2002, (8): 281-288. doi: 10.1046/j.1365-2486.2002.00466.x/full#references [9] RYALLS J M W, MOORE B D, RIEGLER M, et al. Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures[J]. Journal of Experimental Botany, 2015, 66 (2): 613-623. doi: 10.1093/jxb/eru439 [10] ALJAZAIRI S, NOGU S, S. The effects of depleted, current and elevated growth CO2 in wheat are modulated by water availability [J]. Environmental and Experimental Botany, 2015, 112: 55-66. doi: 10.1016/j.envexpbot.2014.12.002 [11] BUCHNER P, TAUSZ M, FORD R, et al. Expression patterns of C-and N-metabolism related genes in wheat are changed during senescence under elevated CO2 in dry-land agriculture[J]. Plant Science, 2015, 236: 239-249. doi: 10.1016/j.plantsci.2015.04.006 [12] SUN Y C, FENG L, GAO F, et al. Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids[J]. Insect Science, 2011, (18): 451-461. https://www.researchgate.net/profile/Yucheng_Sun/publication/229970235_Effects_of_elevated_CO2_and_plant_genotype_on_interactions_among_cotton_aphids_and_parasitoids/links/00b49530a9b045d151000000.pdf?disableCoverPage=true [13] 翁霞, 辛广, 李云霞.蒽酮比色法测定马铃薯淀粉总糖的条件研究[J].食品研究与开发, 2013, (17): 86-88. doi: 10.3969/j.issn.1005-6521.2013.17.023 [14] 伍云卿, 涂杰峰, 范超.果蔬中单宁测定技术研究[J].中国农学通报, 2015, 31(11): 166-169. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201511032.htm [15] 万云帆, 游松财, 李玉娥, 等. CO2浓度和温度升高对早稻生长及产量的影响[J].农业环境科学学报, 2014, 33 (9): 1693-1698. doi: 10.11654/jaes.2014.09.004 [16] 孙玉诚, 郭慧娟, 刘志源, 等.大气CO2浓度升高对植物-植食性昆虫的作用机制[J].应用昆虫学报, 2011, 48(5): 1123-1129. doi: 10.7679/j.issn.2095-1353.2011.186 [17] 李保平, 郭庆, 孟玲.CO2浓度升高对稻纵卷叶螟生长发育、繁殖和食物利用效率的影响[J].中国农业科学, 2013, 46(21): 4464-4470. doi: 10.3864/j.issn.0578-1752.2013.21.008