Improvement on Greenhouse Soil by Addition of Trichoderma harzianum Th3 Preparation Using Spent Substrate from Pleurotus eryngii Cultivation
-
摘要: 以杏鲍菇菌糠为培养基,发酵木霉(Trichoderma harzianum)Th3,获得菌糠木霉发酵物。将发酵物按照5个不同添加量掺入温室土壤中,盆栽不结球白菜Brassica campestris,研究发酵物的不同添加量对土壤pH、土壤蔗糖酶、土壤脲酶、不结球白菜根际木霉定殖数量、不结球白菜发芽率、出苗率、总生物量、叶绿素含量的影响。结果表明:当菌糠木霉发酵物与温室土壤比例为1:39时,不结球白菜种子的出苗率明显提高,最高达到83.93%,不结球白菜叶片的叶绿素含量增加了51.23%,不结球白菜的总生物量提高了27.94%;土壤pH值提高至6.97,土壤蔗糖酶和脲酶活性得到提高,最高分别达到8.80、2.21 mg·g-1·d-1,木霉在不结球白菜根际的定殖数量明显提高,说明菌糠木霉发酵物具有很好的土壤改良效果,并能提高不结球白菜产量。Abstract: Trichoderma harzianum Th3 was inoculated on the spentsubstratefrom Pleurotus eryngii cultivation for fermentation. The resulting material wassubsequently mixed with the greenhouse soil at 5levels to evaluate their effects on the soil through observations on the growth of Brassica campestris planted on them. The pH, invertaseand urease in the soil mixture, the Th3countinrhizosphere, as well as the germination, emergence, total biomass, and chlorophyll content of the vegetable were determined. The results showed that the ratio of Th3 preparation to soil at 1:39 resulted in significant increases onthe seedling emergence (83.93% at maximum), the leaf chlorophyll content by 51.23%, thetotal biomass by 27.94%, the soil pH to 6.97, the invertase activity to 8.80 mg·g-1-d, the urease activity at 2.21 mg·g-1-d, and the enhancement of Th3 count in the rhizosphere. It appeared that addition of theTh3 preparation using the spent substrate from mushroom cultivation could improve the soil quality and yield of B. campestris.
-
表 1 杏鲍菇菌糠发酵木霉前后的基本营养成分与理化指标
Table 1. Nutritional, physical and chemical properties of spent substrate from P. eryngii cultivation before and after Th3 fermentation
检测项目 木霉发酵前菌糠/% 木霉发酵后菌糠/% 粗灰分 5.3 5.8 粗纤维 16.66 22.75 粗蛋白 6.92 8.27 全磷 2.86 2.37 pH 5.2 7.4 表 2 不同配方基质对不结球白菜种子发芽率和出苗率的影响
Table 2. Effects of soil mixtures on seedling germination and emergence rate of B. campestris
项目 重复 处理1 处理2 处理3 处理4 处理5 对照 df F P 发芽率/% 8 87.50±2.547b 82.14±3.665b 84.28±0.687b 96.43±1.467a 83.93±0.791b 81.25±3.018b (5, 44) 6.04 < 0.01 出苗率/% 8 76.79±7.605ab 73.21±1.192b 76.78±7.110ab 83.93±0.884a 78.57±4.676ab 75.00±4.477ab (5, 18.24) 0.54 < 0.01 注:数据处理前进行数据正态分布和方差齐性检验,若试验数据方差齐用one-way Anova进行数据分析;若试验数据方差不齐,使用Welch’s Anova进行数据处理,数值表示为“平均值±标准差”。同行数据后不同小写字母表示差异显著(P < 0.05)。下表同。 表 3 不同菌糠木霉发酵物添加量对土壤pH值的影响
Table 3. Effect of additions of Th3 and mushroom spent substrate preparation on soil pH
时间/d pH df F P 处理1 处理2 处理3 处理4 处理5 对照 0 7.01±0.003a 6.95±0.003b 6.90±0.003c 6.78±0.003d 6.76/±0.002e 6.76±0.001e (5, 12) 0.002 < 0.01 30 7.13±0.003a 7.01±0.003b 6.98±0.006c 6.88±0.005d 6.83±0.007e 6.75±0.001f (5, 12) 919.83 < 0.01 60 7.16±0.010a 7.01±0.004b 7.03±0.020b 6.97±0.012bc 6.90±0.063c 6.68±0.002d (5, 12) 33.50 < 0.01 表 4 不同菌糠木霉发酵物添加量对土壤蔗糖酶活性的影响
Table 4. Effect of additions of Th3 and mushroom spent substratepreparationon invertase activity in soil
时间/d 酶活/(mg·g-1·d-1) df F P 处理1 处理2 处理3 处理4 处理5 对照 30 7.27±0.074c 7.66±0.113bc 7.94±0.141b 8.80±0.383a 8.53±0.185a 8.17±0.036a (5, 12) 8.59 < 0.01 60 5.44±0.044bc 4.72±0.609c 5.66±0.044ab 6.33±0.058a 6.10±0.040ab 2.80±0.035d (5, 12) 26.28 < 0.01 表 5 不同菌糠木霉发酵物添加量对土壤脲酶活性的影响
Table 5. Effect of additions of Th3 and mushroom spent substratepreparationon urease activity in soil
时间/d 酶活/(mg·g-1·d-1) df F P 处理1 处理2 处理3 处理4 处理5 对照 30 0.57±0.036 0.57±0.074 0.63±0.005 0.64±0.011 0.56±0.010 0.54±0.013 (5, 12) 1.30 0.327 60 2.19±0.004 2.19±0.010 2.20±0.010 2.21±0.001 2.19±0.009 2.19±0.003 (5, 12) 0.99 0.465 表 6 不同菌糠木霉发酵物添加量对不结球白菜根际木霉数量的影响
Table 6. Effect of additions of Th3 and mushroom spent substratepreparationon Th3 count in rhizosphere
时间/d 木霉数量/(106 cfu·g-1) df F P 处理1 处理2 处理3 处理4 处理5 对照 30 37.07±1.733a 25.97±0.578b 21.87±1.098c 11.73±0.260d 0.474±0.026e 0e (5, 12) 284.30 < 0.01 60 25.77±1.155a 17.00±0.393b 16.27±0.764b 11.54±1.970c 9.56±0.394c 0d (5, 12) 73.10 < 0.01 表 7 不同菌糠木霉发酵物添加量对不结球白菜叶绿素含量的影响
Table 7. Effect of additions of Th3 and mushroom spent substratepreparationon chlorophyll contents in leaves of B. campestris
时间/d 叶绿素含量/(mg·dm-2) df F P 处理1 处理2 处理3 处理4 处理5 对照 30 2.80±0.056b 2.95±0.027b 3.17±0.077a 3.24±0.021a 2.77±0.063b 2.25±0.078d (5, 12) 36.87 < 0.01 60 0.64±0.030c 0.78±0.062bc 0.93±0.068b 1.11±0.061a 0.87±0.064b 0.62±0.050c (5, 12) 10.42 < 0.01 表 8 不同菌糠木霉发酵物添加量对不结球白菜总生物量的影响
Table 8. Effect of additions of Th3 and mushroom spent substratepreparationon total dry biomass of B. campestris
时间/d 总生物量/(g·株-1) df F P 处理1 处理2 处理3 处理4 处理5 对照 30 0.06±0.001d 0.07±0.004bc 0.09±0.006b 0.13±0.007a 0.09±0.006b 0.07±0.008bc (5, 12) 21.44 < 0.01 60 0.12±0.005d 0.18±0.008c 0.21±0.011b 0.29±0.012a 0.27±0.006a 0.23±0.009b (5, 12) 51.84 < 0.01 -
[1] 魏峰, 侯祥保, 李凤玉.食用菌菌糠的综合利用研究[J].中国园艺文摘, 2010, (4):162-163. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yuwz201004086&dbname=CJFD&dbcode=CJFQ [2] 卜文文, 陶鸿, 赵大纲, 等.食用菌菌糠综合再利用研究概述[J].中国瓜菜, 2012, 25(3):40-43. http://d.old.wanfangdata.com.cn/Periodical/zgxgtg201203013 [3] 许艳丽, 刘利娥, 韩萍, 等.平菇培养基及其菌糠营养成分分析[J].中国饲料, 2015, (3):31-34. http://d.old.wanfangdata.com.cn/Periodical/zgsl201503010 [4] MEDINA E, PAREDES C, PEREZ-MURCEA, M D. et al. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants[J]. Bioresource Technology, 2009. https://www.sciencedirect.com/science/article/pii/S0960852409003137 [5] 张建华, 乌云, 张忠兵, 等.蘑菇菌糠营养成分分析[J].内蒙古农业科技, 2000, (6):14-16. [6] 孙召伟, 邢力, 王宇, 等.五种菇类菌糠营养成分的比较研究[J].黑龙江农业科学, 2014, (9):32-33. https://www.wenkuxiazai.com/doc/9449ba7da26925c52cc5bff2-2.html [7] 杜学振, 熊莹, 邹知明, 等.杏鲍菇菌糠在乌鬃鹅饲养中的应用研究[J].饲料研究, 2016, (18):1-3, 6. http://mall.cnki.net/magazine/Article/SLYJ201618007.htm [8] 李永芳.食用菌菌渣的再利用[J].生物学通报, 2001, 3(36):44-45. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=swxt200103031&dbname=CJFD&dbcode=CJFQ [9] 孙建华, 袁玲, 张翼.利用食用菌菌渣生产有机肥料的研究[J].中国土壤与肥料, 2008, (1):52-55. doi: 10.11838/sfsc.20080114 [10] 文少白, 李勤奋, 侯宪文, 等.微生物降解纤维素的研究概况[J].微生物学通报, 2010, 26(1):231-236. http://www.nsfc.gov.cn/publish/portal0/tab448/info68580.htm [11] 杨合同.木霉生物学[M].北京:中国大地出版社, 2015. [12] 朱小平, 刘微, 高书国, 等.有益微生物组合加菌糠对菠菜生长及土壤养分的影响[J].河北职业技术师范学院学报, 2003, 17(2):21-24. http://www.cqvip.com/qk/96691A/200302 [13] 朱小平, 刘微, 高书国, 等.有益微生物组合加菌糠对不结球白菜生长及土壤养分的影响[J].河南农业科学, 2004, (6):58-61. http://mall.cnki.net/magazine/magadetail/HNNY200406.htm [14] 朱小平, 刘微, 高书国, 等.菌糠复合剂对不结球白菜生长发育及产量的影响[J].河北科技师范学院学报, 2006, 20(3):7-11. http://www.oalib.com/paper/4677055 [15] 劳家柽.土壤农化分析手册[M].北京:中国农业出版社, 1988. [16] 关松荫.土壤酶及其研究法[M].北京:中国农业出版社, 1986. [17] 中国科学院南京土壤研究所.土壤微生物研究方法[M].北京:科学出版社, 1985. [18] 方中达.植病研究方法:第3版[M].北京:中国农业出版社, 1998. [19] 钱存柔, 黄仪秀.微生物学实验教程[M].北京:北京大学出版社, 1999. [20] 舒展, 张晓素, 陈娟, 等. [J]. 植物生理学通讯, 2010, 46(4): 399-402. [21] 谢修鸿, 梁运江, 李玉.黑木耳菌糠改良苏打盐碱土效果研究[J].水土保持学报, 2008, 22(5):130-133. https://www.wenkuxiazai.com/doc/a23228f6aeaad1f346933ffc.html [22] 朱小平, 刘微, 杜迎辉, 等.菌糠复合剂对不结球白菜生长及硝酸盐含量的影响[J].河北科技师范学院学报, 2014, 28(3):16-18, 80. https://www.wenkuxiazai.com/doc/501113f5b14e852458fb57e1-2.html [23] TANG W H, YANG H T, RYDER. Research and application of Trichoderma spp. in biological control of plant pathogens. In "Bio-Exploitation of Filamentous Fungi" M. Eds S. B. Pointing and K. D. Hyde. Fungal Biodiversity Research Series, 2001, 6: 403-435. [24] HEXON A C C, LOURDES M R, CARLOS C P, et al.Trichoderma virens, a plant benefical fungus, enhances biomass production and promotes lateral root growth through and auxin-dependent mechanism in Arabidopsis[J]. Plant Physiology, 2009, 49:1579-1592. http://www.chinaagrisci.com/Jwk_zgnykxen/EN/rss_zxly.xml [25] EZZI M I, LYNCH J M.Cyanide catabolizing enzymes in Trichoderma spp[J]. Enzyme and Microbial Technology, 2002, 31:1042-1047. doi: 10.1016/S0141-0229(02)00238-7 [26] VINALE F, MARRA R, SCALA F, et al.Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens[J]. Applied Microbiology, 2006, 43:143-148. doi: 10.1111/lam.2006.43.issue-2 [27] 燕嗣皇, 吴石平.木霉生防菌对根际微生物的影响与互作[J].西南农业学报, 2005, 18(1):40-46. http://www.cnki.com.cn/Article/CJFDTOTAL-HZXB201305010.htm [28] HARMAN G E, HOWELL C R, VITERBOA, et al.Trichoderma species opportunistic, avirulent plant symbionts[J]. Nat Rev Microbiol, 2004, 2:43-56. doi: 10.1038/nrmicro797 [29] RAMAN J.Response of Azotobacter, Pseudomonas and Trichoderma on growth of apple seedling[J]. International Conference on Biological and Life Sciences, IPCBEE, 2012, 40:83-90. https://www.researchgate.net/profile/Moustafa_Shalaby2/publication/276411695_Effect_of_Cytokinin_Gibberellin_and_Microbial_Filtrates_of_both_Pseudomonas_sp_and_Saccharomyces_cerevisiae_on_Coriander_Plants_under_Compost-Fertilized_Field_Conditions/links/555925f608ae6fd2d826eb78/Effect-of-Cytokinin-Gibberellin-and-Microbial-Filtrates-of-both-Pseudomonas-sp-and-Saccharomyces-cerevisiae-on-Coriander-Plants-under-Compost-Fertilized-Field-Conditions