Effect of Nitrogen Stress on Physiological and Biochemical Properties of Different Types of Rice
-
摘要: 以穗型直立的紧凑型品种沈农07425和穗型弯曲的松散型品种秋光为材料, 从不同施氮量对两水稻品种抗氧化酶活性和细胞膜伤害的影响两个方面研究氮胁迫对水稻生理生化特性的影响。结果表明:两品种叶片丙二醛含量随着水稻生育期的推进不断增加, 这种增长趋势在松散型品种秋光上表现更为明显, 各处理间丙二醛含量为低氮、高氮处理大于中氮处理。两株型品种的叶片CAT、SOD活性在测定时期内呈现降低的趋势, 且这种趋势在紧凑型沈农07425上表现更突出, 而叶片POD活性随着生育进程的推进小幅上升, 至灌浆15 d达到最大值, 之后慢慢下降。两品种叶片SOD、POD、CAT活性均呈现高氮>中氮>低氮的关系。因此, 在土壤N 0.1~0.2 g·kg-1, 增施氮肥能提高保护酶活性, 提升植物体内清除自由基的能力, 延缓叶片衰老。MDA含量、POD活性可作为选择生育后期活性强、衰老慢品种的依据, 以期获得较高的产量及氮肥利用率。Abstract: The compact rice with erect panicles, Shennong 07425, and the loose rice with curved panicles, Akihikari, were used to study the effect of nitrogen applications on thephysiological and biochemical properties of the different types of rice plants.Activities of antioxidant enzymes and damages occurred to thecell membranes of the plants were the criteria used for the evaluation.It was found that MDA inthe leaves of both varieties elevated as the plants aged, and it was more apparent on Akihikari.In addition, either low or high nitrogenlevel resulted in a higher MDA content than those in between.Both varieties, especially Shennong 07425, exhibited a downward trend on CAT and SOD activities with increasingnitrogenapplications.The leaf POD activityrose slightly as theplant grew, reached a peak 15 days after grouting, andended with a gradual decline.The enzymatic activities were more significantly affected by high than low nitrogenlevels.Consequently, it was concluded that a nitrogen fertilization in the range of N 0.1-0.2 g·kg-1 would enhancethe activities of the protective enzymesin scavenging free radicals delaying senescence of leaves on the plants.Furthermore, theMDA content and POD activity of a rice variety could be used as an indicator in selecting and/or breeding a high-yieldcultivar with an efficient nitrogen utilization capability.
-
Key words:
- nitrogen application /
- plant type /
- rice /
- physiological and biochemicalproperties
-
表 1 施氮量对不同株型水稻品种丙二醛含量的影响
Table 1. Effect of nitrogen application on MDA content in rice of different plant types
[单位/(nmol·g-1)] 项目 T1 T2 T3 T4 沈农
07425N1 18.09bcCD 20.70bcBCD 24.47bcB 27.35cBC N2 16.12cDE 16.56dEF 22.69bcBC 23.82cCD N3 17.80dE 18.96dF 23.01eD 24.13dE PK 18.92bBCD 22.36abABC 23.62deCD 25.09dDE CK 21.41aA 24.83aAB 25.97bcB 26.92cCD 秋光 N1 17.63bcCD 18.83cdCDEF 26.59bcB 29.14bAB N2 16.61cDE 17.90dDEF 23.90eD 26.66cBC N3 17.53bcCD 19.28cdCDEF 25.04cdBC 27.37cCD PK 19.05bABC 20.58bcBCDE 26.87bB 27.08cCD CK 21.29aAB 25.45aA 28.34aA 28.75aA 注:(1)T1=齐穗期, T2=灌浆15 d, T3=灌浆30 d, T4=灌浆45 d; (2)同列数据后不同大、小写字母表示差异达0.01和0.05显著水平。表 2、4、5同。 表 3 品种与施氮量对丙二醛含量及保护酶活性交互作用F检验
Table 3. F significance test on interactive effects between rice variety and nitrogen application on MDA content and activities of SOD, POD and CAT
项目 T1 T2 T3 T4 丙二醛含量 A 0.66 0.01 0.8 15.65** B 10.50** 15.91** 1.79 6.15** A×B 2.39 1.23 10.50** 3.11* SOD活性 A 357.95** 46.24** 25.99** 24.94** B 4.44** 7.43** 5.91** 19.86** A×B 3.10* 8.27** 22.40** 12.81** POD活性 A 133.27** 0.95 4.65* 15.61** B 4.43** 9.37** 2.23 11.74** A×B 3.97* 14.01** 13.46** 12.68** CAT活性 A 18.48** 13.10** 1.87 2.04 B 6.85** 2.46 8.53** 14.76** A×B 0.86 4.43** 3.38* 0.74 注:F0.05(20, 1)=4.35, F0.01(20, 1)=8.10;F0.05(20, 4)=2.87, F0.01(20, 4)=4.43。*、**分别表示F值在0.05和0.01水平上显著。A代表品种, B代表施氮水平。 表 2 施氮量对不同株型水稻品种超氧化物歧化酶活性的影响
Table 2. Effect of nitrogen application on SOD activity in rice of different plant types
[单位/(U·g-1)] 项目 T1 T2 T3 T4 沈农
07425N1 204.13dD 180.03efEF 169.26eE 107.25fG N2 214.73cCD 191.39eDE 175.83eDE 133.84dEF N3 221.86cC 212.79dBC 203.44cC 176.63bB PK 215.30cCD 156.90gG 142.87fF 96.73gGH CK 213.74cCD 166.85fgFG 112.82gG 93.63gH 秋光 N1 273.11bB 205.70dCD 188.27dCD 139.21dDE N2 279.81bB 265.66bA 241.17bB 152.56cC N3 298.02aA 281.27aA 266.01aA 193.87aA PK 274.55bB 214.68dBC 198.07cdC 147.26cCD CK 270.68bB 231.19cB 202.85cC 124.63eF 表 4 施氮量对不同株型水稻品种过氧化物酶活性的影响
Table 4. Effect of nitrogen application on POD activity in rice of different plant types
[单位/(U·g-1·h-1)] 项目 T1 T2 T3 T4 沈农
07425N1 127.49eCD 195.62cdBC 173.85bcBC 140.46dDE N2 131.20deC 199.06bcBC 182.05abAB 170.02bB N3 135.34d C 206.08bB 186.04abAB 181.3033aA PK 111.89fE 179.27eD 178.77abABC 150.71cCD CK 118.42fDE 165.28gF 145.53cC 138.41dE 秋光 N1 160.72abAB 188.49deCD 138.82deD 117.68eF N2 160.78abAB 222.75aA 175.00bABC 151.24cC N3 162.35aA 232.27aA 191.40aA 170.79bB PK 154.48bcAB 164.11fE 129.13eD 105.90fG CK 152.01cB 157.24fEF 143.15dD 120.49eF 表 5 施氮量对不同株型水稻品种过氧化氢酶活性的影响
Table 5. Effect of nitrogen application on CAT activity in rice of different plant types
[单位/(mg·g-1·min-1)] 项目 T1 T2 T3 T4 沈农
07425N1 16.66bcABC 4.74bcCD 3.34cC 2.81dD N2 19.38abAB 6.48aA 4.27bB 3.95bABC N3 20.63aA 7.02aA 5.17aA 4.28aAB PK 16.08cdBC 5.08bBC 4.51bAB 3.65abcABCD CK 14.94cdC 6.24aAB 3.38cC 3.37bcdBCD 秋光 N1 14.39cdC 3.66dD 3.10cC 3.01cdD N2 15.51cdBC 4.76bcCD 4.49bAB 3.54bcABCD N3 16.61bcdABC 5.05bBC 4.81abAB 4.31aA PK 14.76cdC 5.02bC 3.40cC 3.30bcdCD CK 13.66dC 3.94cdCD 3.33cC 3.03cdD -
[1] 张亚丽, 沈其荣, 段英华.不同氮素营养对水稻的生理效应[J].南京农业大学学报, 2004, 27(2):130-135. http://d.old.wanfangdata.com.cn/Periodical/njnydxxb200402030 [2] SMIROFF N.Plant resistance to environmental stress[J].Curr Opin Biotechnol, 1998, (2):214-219. https://www.researchgate.net/publication/13620943_Plant_resistance_to_environmental_stress [3] 高士杰.直立穗型水稻的研究Ⅳ直立穗型水稻生育后期物质生产与转运[J].吉林农业科学, 2001, 26(6):16-19. http://d.old.wanfangdata.com.cn/Periodical/jlnykx200106003 [4] 李雪梅, 樊金娟, 徐正进.不同穗型水稻品种灌浆期生理特性的差异[J].沈阳农业大学学报, 2003, 34(5):347-350. http://www.docin.com/p-509936768.html [5] 金峰, 陈书强, 李培培, 等.直立与弯曲穗型水稻穗上不同部位粒形分布特征[J].沈阳农业大学学报, 2008, 39(3):279-284. http://www.ricesci.cn/CN/abstract/abstract1898.shtml [6] 刘柏林, 陈书强, 董丹, 等.水稻株型性状与稻曲病发病程度关系的研究[J].湖北农业科学, 2009, 48(1):42-46. http://www.wenkuxiazai.com/doc/a730fc57a32d7375a4178077.html [7] 蔡瑞国, 张敏, 尹燕秤, 等.小麦灌浆过程中旗叶光合及抗氧化代谢与氮素营养关系研究[J].中国农业科学, 2008, 41(1):53-62. http://d.old.wanfangdata.com.cn/Periodical/zgnykx200801007 [8] 曹赐生, 吴岳轩.不同抗性水稻品种叶片中活性氧代谢的比较[J].湘潭师范学院学报, 1997, 18(6):67-69. [9] 李宪利, 高东升, 顾曼如, 等.铵态氮和硝态氮对苹果植株SOD活性的影响[J].植物生理学通讯, 1997, 33(4):254-255. http://www.doc88.com/p-5896860786537.html [10] 刘瑞显, 郭文琦, 陈兵林, 等.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J].作物学报, 2008, 34(9):1598-1607. https://www.wenkuxiazai.com/doc/08392651f7ec4afe05a1df1e.html [11] 赵国臣, 武志海, 徐克章.新老水稻品种抽穗后叶片保护酶活性的变化及其与光合速率的关系[J].安徽农业科学, 2010, 38(28):15481-15483, 15486. doi: 10.3969/j.issn.0517-6611.2010.28.013 [12] 余泽高, 王红闪.小麦抗衰性与丙二醛含量相关性的初步探讨[J].湖北农业科学, 2003, (2):28-29, 36. http://www.docin.com/p-508678632.html [13] WANG F Z, WANG Q B, KWON S Y, et al.Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase[J].Journal of Plant Physiology, 2005, 162:465-472. doi: 10.1016/j.jplph.2004.09.009 [14] 刘少华. 水分胁迫对高产杂交稻功能叶光合及抗氧化系统特性的影响[D]. 重庆: 西南大学, 2003. [15] 鲍士旦.土壤农化分析[M].北京:中国农业大学出版社, 2002, 159-163. [16] 毛达如.植物营养研究法[M].北京:中国农业大学出版社, 2002, 8-10. [17] 陈温福.北方水稻生产技术问答[M].北京:中国农业出版社, 2007, 78-80. [18] 郝建军, 刘延吉.植物生理学试验技术[M].沈阳:辽宁科学技术出版社, 2001, 64-181. [19] TAKESHITA T.Current development and usage situation of plant grow the regulation in Japan[J].Japan Pesticide Information, 1990, 57:15. http://agris.fao.org/agris-search/export!exportTopEndNoteXML.action?agrovocString=Biological+competition&onlyFullText=false [20] 王启明, 徐心诚, 马原松, 等.干旱胁迫下大豆开花期的生理生化变化与抗旱性的关系[J].干旱地区农业研究, 2005, 23(4):98-100. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200504020 [21] 李奕松, 黄仲青.两系釉型杂交水稻齐穗后光合作用和衰老特性的研究[J].中国水稻科学, 2002, 16(2):141-145. [22] 邬非波, 成灿土, 许馥华.氮素营养对短季棉生理代谢和产量的影响[J].浙江农业大学学报, 1998, 24(3):241-247. [23] 关欣, 陈温福, 殷红, 等.不同年代水稻品种齐穗后叶片保护酶活性及膜脂过氧化作用比较分析[J].沈阳农业大学学报, 2003, 34(5):351-354. http://d.old.wanfangdata.com.cn/Periodical/synydxxb200305009 [24] 任红旭, 陈雄, 王亚馥.抗旱性不同的小麦幼苗在水分和盐胁迫下抗氧化酶和多胺的变化[J].植物生态学报, 2001, 25(6):709-715. http://d.old.wanfangdata.com.cn/Periodical/zwstxb200106011 [25] 胡文河, 王兴录, 刘振库.不同密度水稻抽穗后生理特性的研究[J].吉林农业大学学报, 2006, 28(6):594-596. http://d.old.wanfangdata.com.cn/Periodical/jlnydxxb200606002 [26] 姜东, 于振文, 苏波, 等.不同施氮时期对冬小麦根系衰老的影响[J].作物学报, 1997, 23(2):181-190. [27] 王贺正, 马均, 李旭毅, 等.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学, 2007, 40(7):1379-1387. https://www.wenkuxiazai.com/doc/a4f8488e7f1922791788e83e.html