Development and Utility of Storable Indica Restorer Line, Fuhui 7185
-
摘要: 福恢7185(FH7185)是以优良恢复系福恢653为受体亲本, 以耐储藏品种云恢290为供体亲本, 采用连续回交与系统选育的方法, 育成的籼型杂交水稻新恢复系; 该恢复系集株叶形态好、农艺性状优良、配合力高、恢复力强、耐储藏性好等优点于一体, 具有较好的市场应用价值和潜力。对比FH7185与对照的颖壳和淀粉粒显微结构, 发现FH7185颖壳上麸毛最少, 人工老化处理20 d后淀粉粒结构相对整齐, 这与人工老化结果一致, 说明FH7185具有较高的耐储性, 可以利用其创制出更多的耐储藏材料。Abstract: A new variety of indica hybrid rice restoring line, Fuhui 7185, was developed by crossing and successive back-crossing with systemic selection between the strong restoring line, Fuhui 653, and a storable variety, Yunhui 290.The obtained Fuhui 7185 had desirable leaf morphology, agronomic traits, combining ability, resilience and storability that would enjoy high value and commercial potential on the market.Under microscope, the testas of Fuhui 7185 showed fewer trichomes than those of control.And, the structure of starch granules remained relatively unaltered after artificial aging for 20 d, suggesting a high storability for the newly developed hybrid rice.
-
Key words:
- hybrid rice /
- Fuhui 7185 /
- storable /
- back-crossing /
- development /
- utility
-
图 3 FH7185所配杂交稻组合人工老化处理前后发芽率情况
注:图中A为YH290, B为FH653, C为FH7185, D为和6028/FH7185, E为云109A/FH7185, F为福龙A/FH7185, G为荃9311A/FH7185, H为内香10A/FH7185, I为长泰A/FH7185, J为广8A/FH7185, K为徽1892S/FH7185, L为明2A/FH7185, M为隆科638S/FH7185。
Figure 3. Seed germination rates of new hybrid rice combinations from Fuhui 7185 before and after artificial aging
表 1 FH7185所配组合的产量性状
Table 1. Yields of new hybrid rice combinations from Fuhui 7185
组合 穗数 平均穗长/cm 实粒数 总粒数 结实率/% 千粒重/g 株高/cm 每667 m2理论产量/kg 明优 7185 11.3±1.8 24.9±0.7 1634.3±269.3 2288.3±310.3 0.71±0.04 25.3±0.9 109.0±0.6 620.2 长泰优 7185 9.7±0.3 21.4±0.3 1901.7±19.4 2265.7±33.2 0.84±0.01 25.2±0.1 93.3±0.3 718.8 Ⅱ优明 86 11.3±1.2 23.0±0.5 1808.3±266.9 1907.3±273.6 0.95±0.005 25.8±0.1 110.7±1.8 699.8 广8优 7185 15.0±2.1 23.1±0.3 2981.7±280.7 3586.3±382.8 0.83±0.01 21.0±0.6 101.7±0.7 939.2 荃优 7185 9.7±0.9 22.5±0.1 1763.7±192.1 1873.7±205.1 0.94±0.005 29.2±0.3 104.3±0.7 772.5 隆两优 7185 8.7±0.3 22.7±0.1 1393.3±68.9 1469.0±66.4 0.95±0.006 28.2±0.3 107.3±1.2 589.4 深两优 7185 10.0±0.0 22.5±0.3 1170.3±20.4 1579.0±42.1 0.74±0.008 26.9±0.7 108.7±0.7 472.2 丰两优 4号 9.7±0.3 19.5±1.5 1237.7±20.2 1518.0±57.5 0.82±0.03 28.6±0.6 98.0±0.6 531.0 和两优 7185 11.7±2.2 23.8±0.3 1664.0±235.1 2011.0±367.8 0.84±0.03 23.8±0.2 98.3±0.3 594.0 表 2 杂交水稻新品种明优7185在广西区早造迟熟组预试表现
Table 2. Performance of new hybrid Mingyou 7185 in pretest for late-maturing rice from Guangxi regions
品种名称 每667 m2产量/kg 产量位次 比CK±/% 全生育期/d 比CK ±/d 每667 m2有效穗/万穗 株高/cm 穗长/cm 总粒/(粒·穗-1) 实粒/(粒·穗-1) 结实率/% 千粒重/g 明优 7185 572.2 1 11.94 125.4 3.6 16.6 125.4 26.5 155.4 131.1 84.3 29.7 特优 7118(CK) 511.1 11 0.00 121.8 0.0 16.9 118.0 21.8 155.1 135.6 87.3 26.2 -
[1] 蔡洪法.我国水稻生产现状与发展展望[J].中国稻米, 2000, 6. http://d.wanfangdata.com.cn/periodical_zgdm200006001.aspx [2] 程式华, 李建.现代中国水稻[M].北京:金盾出版社, 2007:1-35. [3] 虞国平, 朱鸿英.我国水稻生产现状及发展对策研究[J].现代农业科技, 2009, 6. http://www.doc88.com/p-7344339053208.html [4] 许惠滨, 魏毅东, 连玲, 等.水稻种子人工老化与自然老化的分析比较[J].分子植物育种, 2013, 11(5):552-556. https://www.wenkuxiazai.com/doc/8f8d8258f12d2af90242e6cf.html [5] ROBERTS E M, MCDONALD JR C, NELSON.Physiology of Seed Deterioration, Crop Science Society of America[M].Inc Special Publication, 1986. [6] MCDONALD M.Seed deterioration:physiology, repair and assessment[J].Seed Sci Tech, 1999, 27:177-237. https://www.researchgate.net/publication/279901910_Seed_deterioration_Physiology_repair_and_assessment [7] SIDDIQUE S, SESHU D, PARDEE W.Rice cultivar variability in tolerance for accelerated aging of seed[J].IRRI Res, 1988, 131:2-7. http://www.worldcat.org/title/rice-cultivar-variability-in-tolerance-for-accelerated-aging-of-seed/oclc/18979090 [8] SPECHT C E, FREYTAG U, HAMMER K, et al.Survey of seed germinability after long-term storage in the Gatersleben gene bank (part 2)[J].Plant Genet Res Newsl, 1998, 115:39-43. http://www.chinaagrisci.com/EN/abstract/abstract18583.shtml [9] MIURA K, LIN S, YANO M, et al.Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.)[J].Theor Appl Genet, 2002, 104:981-986. doi: 10.1007/s00122-002-0872-x [10] 吴方喜, 朱永生, 谢鸿光, 等.中国水稻微核心种质的耐储藏特性初步研究[J].中国粮油学报, 2010, 25(10):124-128. http://d.old.wanfangdata.com.cn/Periodical/zglyxb201010027 [11] 柳武革, 王丰, 刘振荣, 等.水稻耐储藏特性研究进展[J], 生物技术通报, 2006, 50-52. http://d.old.wanfangdata.com.cn/Periodical/swjstb2006z1010 [12] 董国军, 胡兴明, 曾大力, 等.水稻种子人工老化和自然老化的比较研究[J].浙江农业科学, 2004, (1):27-29. http://www.docin.com/p-9185811.html [13] 李稳香, 颜启传.杂交水稻自然老化种子与人工老化种子性能差异研究[J].杂交水稻, 1997, 12(3):26-28. [14] 曾大力, 钱前, 国广泰史, 等.稻谷储藏特性及其与籼粳特性的关系研究[J].作物学报, 2002, 28(4):551-554. http://d.old.wanfangdata.com.cn/Periodical/zuowxb200204022 [15] WANG F W, WANG R, JING W, et al.Quantitative dissection of lipid degradation in rice seeds during accelerated aging[J].Plant Growth Regul, 2012, 66:49-58. doi: 10.1007/s10725-011-9628-4 [16] XU H B, WEI Y D, ZHU Y S, et al.Antisense suppression of LOX3 gene expression in rice endosperm enhances seed longevity[J].Plant Biotechnology Journal, 2015, 13(4):526-539. doi: 10.1111/pbi.12277 [17] ISABELLE DEBEAUJON, KAREN M.Le on-Kloosterziel, Maarten Koornneef.Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis[J].Plant Physiology, 2000, 122:403-413. doi: 10.1104/pp.122.2.403 [18] XUE Y S.ZHANG, YAO Q, et al.Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.)[J].Euphytica, 2008, 164:739-744. doi: 10.1007/s10681-008-9696-3