Joint Multi-Generation Genetic Analysis on Kernelling Rate of Maize
-
摘要: 玉米出籽率是影响果穗同化产物分配状况的重要指标,与单穗产量密切相关,研究其遗传规律对玉米高产育种具有重要的指导意义。本研究以出籽率存在显著差异的2个普通玉米自交系组配的P1、P2、F1、BC1、BC2、F26个世代为试验材料,运用主基因+多基因遗传模型分析方法进行分析。结果表明,玉米出籽率的遗传受2对加性-显性-上位性主基因+加性-显性多基因共同控制;2对主基因和多基因的加性效应与显性效应均表现为增效,加性×加性互作、显性×显性互作、加性×显性互作、显性×加性互作等上位性效应均表现为减效;BC1、BC2、F2主基因的遗传率分别为54.05%、36.26%、48.83%,BC1、BC2、F2多基因的遗传率分别为26.45%、46.36%、31.43%,主基因+多基因总遗传率为81.13%;由此说明主基因与多基因在控制玉米出籽率遗传特性上都具有重要作用,以主基因遗传为主,非加性基因效应大于加性基因效应,同时环境因素对出籽率性状具有一定影响。本研究将为玉米出籽率性状的基因定位和选择育种提供理论指导。Abstract: The kernelling rate of maize is an indicator of the as similation product distribution of the plant. It closely relates to the kernel count on an ear of maize, or the plant yield. To understand the inheritance of maize would be of significant interest inbreeding high yield varieties.Six generations, i.e., P1, P2, F1, BC1, BC2, and F2, from the cross L055 Qi319 were studied using the mixed major genesand ploygene inheritance model. The results showed that maize kernelling rate was controlled by two major genes with additive-dominance-epistatic effects as well as polygene with additive-dominant effects. The additive-dominant effects of the two major genes and polygene could increase the rate, while the epistatic effect decreased it.The major gene heritability of BC1, BC2, and F2 were 54.05%, 36.26% and 48.83%, respectively; while the polygene, 26.45%, 46.36% and 31.43%, respectively.The combined heritability of major genes and polygene was 81.13%.They were all important on the inheritance of kernelling rate, which was mainly governed by the major genes, affected more strongly by the non-additive than the additivegene effect, and somewhat influenced by the environmental conditions.
-
Key words:
- maize /
- kernelling rate /
- major gene and polygene /
- inheritance
-
图 1 各世代群体的出籽率均值及次数分布
注:A为均值与标准差;图中世代P1为L055,P2为齐319,F1为L055×齐319,BC1为L055/齐319//L055,B2为L055/齐319/齐319,F2为L055×齐319。B为BC1世代,图中a~o出籽率分别为83.22%~83.76%、83.76%~84.29%、84.29%~84.83%、84.83%~85.36%、85.36%~85.90%、85.90%~86.43%、86.43%~86.97%、86.97%~87.50%、87.50%~88.04%、88.04%~88.58%、88.58%~89.11%、89.11%~89.65%、89.65%~90.18%、90.18%~90.72%、90.72%~81.25%。C为BC2世代,图中a~o出籽率分别为74.29%~75.42%、75.42%~76.56%、76.56%~77.69%、77.69%~78.82%、78.82%~79.05%、79.05%~81.09%、81.09%~82.22%、82.22%~83.35%、83.35%~84.49%、84.49%~85.62%、85.62%~86.75%、86.75%~87.80%、87.80%~89.02%、89.02%~90.15%、90.15%~91.28%。D为F2世代,图中a~o出籽率分别为77.08%~77.97%、77.97%~78.86%、78.86%~79.75%、79.75%~80.64%、80.64%~81.53%、81.53%~82.42%、82.42%~83.31%、83.31%~84.20%、84.20%~85.09%、85.09%~85.98%、85.98%~86.87%、86.87%~87.76%、87.76%~88.65%、88.65%~89.55%、89.55%~90.44%。
Figure 1. Average kernelling rates and frequency distributionsof crossed maize plantsindifferent generations
表 1 玉米出籽率各遗传模型的AIC值
Table 1. AIC estimates by different genetic models on kernelling rateof maize
模型 遗传模式 AIC值 A-1 1MG-AD 2873.8956 B-1 2MG-ADI 2460.3512 B-5 2MG-AED 2574.2292 D MX1-AD-ADI 2417.316 D-4 MX1-AEND-AD 2548.5771 E-3 MX2-A-AD 2520.7378 A-2 1MG-A 5055.9528 B-2 2MG-AD 2811.2523 B-6 2MG-EEAD 2941.7072 D-1 MX1-AD-AD 2562.3923 E MX2-ADI-ADI 2406.9714 E-4 MX2-EA-AD 2550.8484 A-3 1MG-EAD 2740.0595 B-3 2MG-A 4746.3563 C PG-ADI 2414.1024 D-2 MX1-A-AD 2547.3773 E-1 MX2-ADI-AD 2405.9635 E-5 MX2-AED-AD 2494.9728 A-4 1MG-AEND 3227.5245 B-4 2MG-EA 4755.3912 C-1 PG-AD 2608.6915 D-3 MX1-EAD-AD 2502.5794 E-2 MX2-AD-AD 2497.8477 E-6 MX2-EEAD-AD 2492.9741 注:MG:主基因;A:加性效应;E:等于;D:显性效应;N负向;I:互作(上位性效应);P G:多基因;MX:主基因+多基因。如E模型(MX2-ADI-ADI):2对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传。 表 2 玉米出籽率遗传模型的适合性检验
Table 2. Test for goodness-of-fit on genetic models for kernelling rate of maize
候选模型 世代 U12 U22 U32 nW2 Dn C P1 1.1679(0.2798) 1.3124(0.252) 0.1575(0.6914) 0.1392(>0.05) 0.023(>0.05) F1 0.0241(0.8766) 0.1372(0.7111) 0.7745(0.3788) 0.0829(>0.05) 0.0294(>0.05) P2 0.336(0.5621) 0.3059(0.5802) 0.0011(0.974) 0.0497(>0.05) 0.0527(>0.05) BC1 0.0037(0.9518) 0.0154(0.9012) 0.5339(0.465) 0.0612(>0.05) 0.0038(>0.05) BC2 1.7049(0.1916) 0.8294(0.3624) 2.7796(0.0473)* 0.2369(>0.05) 0.006(>0.05) F2 1.1315(0.2874) 1.5524(0.2128) 0.7465(0.3876) 0.1549(>0.05) 0.0081(>0.05) D P1 0.0033(0.9542) 0.0126(0.9106) 0.0513(0.8208) 0.024(>0.05) 0.0359(>0.05) F1 0.2704(0.603) 0.4773(0.4897) 0.5615(0.4537) 0.1177(>0.05) 0.0285(>0.05) P2 0.0119(0.9132) 0.0133(0.9082) 0.0015(0.9689) 0.024(>0.05) 0.0402(>0.05) BC1 0.0118(0.9134) 0(0.9984) 0.1844(0.6676) 0.0263(>0.05) 0.0052(>0.05) BC2 0.006(0.9381) 0.2837(0.5943) 3.3488(0.0375)* 0.1146(>0.05) 0.0056(>0.05) F2 0.048(0.8265) 0.0035(0.953) 0.3758(0.5398) 0.0246(>0.05) 0.0071(>0.05) E P1 0.0033(0.9542) 0.0126(0.9106) 0.0513(0.8208) 0.024(>0.05) 0.0359(>0.05) F1 0.2704(0.603) 0.4773(0.4897) 0.5615(0.4537) 0.1177(>0.05) 0.0285(>0.05) P2 0.0119(0.9132) 0.0133(0.9082) 0.0015(0.9689) 0.024(>0.05) 0.0402(>0.05) BC1 0.5117(0.4744) 0.3029(0.5821) 0.3237(0.5694) 0.2143(>0.05) 0.0075(>0.05) BC2 0.2232(0.6366) 0.0144(0.9045) 1.8216(0.1771) 0.1546(>0.05) 0.0038(>0.05) F2 0.3596(0.5487) 0.064(0.8003) 1.7174(0.19) 0.1095(>0.05) 0.0132(>0.05) E-1 P1 0.0033(0.9542) 0.0126(0.9106) 0.0513(0.8208) 0.024(>0.05) 0.0359(>0.05) F1 0.2704(0.603) 0.4773(0.4897) 0.5615(0.4537) 0.1177(>0.05) 0.0285(>0.05) P2 0.0119(0.9132) 0.0133(0.9082) 0.0015(0.9689) 0.024(>0.05) 0.0402(>0.05) BC1 0.5117(0.4744) 0.3028(0.5821) 0.324(0.5692) 0.2143(>0.05) 0.0075(>0.05) BC2 0.2137(0.6439) 0.0049(0.944) 2.278(0.1312) 0.1655(>0.05) 0.0038(>0.05) F2 0.2861(0.5927) 0.0461(0.83) 1.4705(0.2253) 0.0902(>0.05) 0.0116(>0.05) 注:U12、U22、U32为均匀性检验统计量,nW2为Smirnov检验统计量,Dn为Kolmogorov检验统计量。*表示在0.05水平差异显著(P < 0.05),**表示在0.01水平差异显著(P < 0.01)。 表 3 玉米出籽率最佳遗传模型遗传参数估计值
Table 3. Estimates of genetic parameters on kernelling rate of maizeby best-fit model
一阶遗传参数 估计值 二阶遗传参数 世代 估计值 m 82.5679 σp2 BC1 1.9463 da 1.7208 σmg2 1.052 db 1.7208 σpg2 0.5148 ha 2.6451 hmg2(%) 54.05 hb 2.6450 hpg2(%) 26.45 ha/da 1.5371 σp2 BC2 5.2171 hb/db 1.5370 σmg2 1.8919 i -0.2445 σpg2 2.4186 jab -1.3506 hmg2(%) 36.26 jba -1.3506 hpg2(%) 46.36 l -4.6674 σp2 F2 4.7611 [d] 2.3491 σmg2 2.4225 [h] 6.6285 σpg2 1.4436 [h]/[d] 2.8217 hmg2(%) 48.83 hpg2(%) 31.43 h2(%) 81.13 注:m是群体平均数;d、h、i、j、l分别代表主基因的加性效应、显性效应、加性与加性互作效应、加性与显性互作效应、显性与显性互作效应;a和b分别代表第1对和第2对主基因;h/d代表显性度;[d]、[h]分别代表多基因的加性效应、显性效应;σp2、σmg2、σpg2分别代表表型方差、主基因方差、多基因方差;hmg2(%)、hpg2(%)、h2(%)分别代表主基因遗传率、多基因遗传率、总遗传率(主基因遗传率+多基因遗传率)。 -
[1] 于振文.作物栽培学各论[M].北京:中国农业出版社, 2003:92-93. [2] 戴景瑞.我国玉米生产发展的前景及对策[J].作物杂志, 1998(5):6-11. http://mall.cnki.net/magazine/Article/XDHY200409008.htm [3] PONELEIT C G, EGLI D B. Kernel Growth Rate and Duration in Maize as Affected by Plant Density and Genotype[J]. Crop Science, 1979, 19(3):385-388. doi: 10.2135/cropsci1979.0011183X001900030027x [4] HORROCKS R D, ZUBER M S. Corn shelling percentage studies[D]. Columbia: University of Missouri, 1970. [5] ELEWEANYA N P, UGURU M I, ENEOBONG E E, et al. Correlation and path coefficient analyses of grain yield related characters in maize (Zea mays L.) under Umudike conditions of South Eastern Nigeria[J]. Agro-Science, 2005, 4(1):24-28. http://chianti.ucsd.edu/svn/cyto_web/trunk/nature.protocols/webstart/plugins/AgilentLiteratureSearch.jar [6] SHINDE S A, SHELKI D K, SAWARGAONKAR G L. Intercharacter associations and path analysis of yield components in rabi maize[J]. International Journal of Plant Sciences, 2009, 4(1):49-51. https://www.cabdirect.org/cabdirect/abstract/20093099202 [7] JADHAV V T, SHELKE D K, SURYAWANSHI V P. Correlation, regression and path coefficient analysis in maize hybrids[J]. Journal of Maharashtra Agricultural Universities, 2009, 34(2):214-215. https://www.researchgate.net/publication/224862543_Correlation_and_path_coefficient_analysis_of_grain_yield_and_yield_contributing_traits_in_single_cross_hybrids_of_maize_Zea_mays_L [8] AHMED M A, MEHASEN S A S, NUAMAN A A. Multivariate of relating yield components in a set of corn genotypes[J]. Arab Universities Journal of Agricultural Sciences, 2009, 17(1):95-102. http://www.cabdirect.org/abstracts/20093186309.html [9] BAHOUSH M M, RABIEI B, DOKHT H A, et al. Analysis of correlation coefficients between grain yield and yield components in maize hybrids.[J]. Iranian Journal of Field Crop Science, 2010, 41(2):215-222. https://www.cabdirect.org/cabdirect/abstract/20103292986?resultNumber=9&q=Path+analysis+maize [10] PAVAN R, LOHITHASWA H C, WALI M C.Correlation and path coefficient analysis of grain yield and yield contributing traits insingle cross hybrids of maize(Zea mays L.)[J].Electronic Journal of Plant Breeding, 2011, 2(2):253-257. http://www.oalib.com/paper/2814386 [11] IQBAL M, KHAN K, SHER H, et al. Genotypic and phenotypic relationship between physiological and grain yield related traits in four maize (Zea mays L.) crosses of subtropical climate[J]. Scientific Research & Essays, 2011, 6(13):2864-2872. doi: 10.3389/fpls.2013.00442/full [12] 赵延明, 王华山, 庄艳, 等.玉米穗部性状的遗传相关分析[J].国外农学:杂粮作物, 1999, (6):8-11. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gnzl199906003&dbname=CJFD&dbcode=CJFQ [13] 梁玲, 阿布来提, 冯国俊, 等.玉米杂交种的产量比较及主要农艺性状的相关和通径分析[J].玉米科学, 2001, 9(1):16-20. http://www.cqvip.com/QK/97657X/2001001/5011396.html [14] 印志同, 邓德祥, 胡加如, 等.玉米自交系性状的遗传相关和通径分析[J].青岛农业大学学报:自然科学版, 2005, 22(4):283-286. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_lynxyxb200504011 [15] 刘帆, 石海春, 余学杰.玉米果穗主要性状与产量间的相关与通径分析[J].玉米科学, 2005, 13(3):17-20. http://www.cnki.com.cn/Article/CJFDTotal-SXLX201509006.htm [16] 孙峰成, 冯勇, 于卓, 等. 12个玉米群体的主要农艺性状与产量、品质的灰色关联度分析[J].华北农学报, 2012, 27(1):102-105. http://www.oalib.com/paper/4831545 [17] 马向利, 徐建忠, 任建军, 等. 2002-2010年河南省玉米区域试验品种分析[J].农业科技通讯, 2014, (5):32-37. doi: 10.3969/j.issn.1001-4942.2012.06.017 [18] 李桂芝, 魏常敏, 周文伟, 等.玉米穗部性状与单株产量的相关及通径分析[J].北京农业, 2015, 3(8):31-32. doi: 10.3969/j.issn.1001-4942.2008.01.003 [19] 孙发明, 焦仁海, 刘兴二, 等.论春玉米区新的育种目标与策略——对郑单958、先玉335国审以后的思考[J].种子科技, 2006, 24(2):44-46. https://www.wenkuxiazai.com/doc/11efb213a8114431b90dd8e9.html [20] 李忠南, 王越人, 邬生辉, 等.玉米品种穗轴重和出籽率等性状的相关及遗传关系研究[J].玉米科学, 2012, 20(5):33-39. http://d.old.wanfangdata.com.cn/Periodical/ymkx201205008 [21] LI Y L, LI X H, LI J Z, et al. Dent corn genetic background influences QTL detection for grain yield and yield components in high-oil maize[J]. Euphytica, 2009, 169(2):273-284. doi: 10.1007/s10681-009-9966-8 [22] 刘强, 孔广超, 周新丽. 9个玉米自交系穗部性状配合力及遗传参数分析[J].农业科技通讯, 2014, (9):77-80. http://www.cqvip.com/QK/96023A/200204/6642663.html [23] 李燕. 7个玉米合成群体选系的配合力及杂优类群分析[D]. 雅安: 四川农业大学, 2010. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1801137 [24] 王亮, 景希强, 丰光, 等. 13个玉米自交系配合力及遗传参数分析[J].杂粮作物, 2009, 29(6):361-364. https://www.wenkuxiazai.com/doc/68dfe5a626fff705cd170a71-2.html [25] 包和平, 杨光, 李春成.爆裂玉米主要数量性状的相关和通径分析[J].吉林农业科学, 2010, 35(1):5-8. http://d.old.wanfangdata.com.cn/Periodical/jlnykx201001002 [26] 赵延明.玉米果穗出籽率遗传效应分析[J].中国农学通报, 2009, 25(3):72-74. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb200903015 [27] 宋天月. 四个糯玉米自交系配合力的测定及其遗传力分析[D]. 天津: 天津农学院, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10061-1014225345.htm [28] 李峰, 宋小霞, 方永丰, 等. 12个玉米自交系穗部性状配合力分析[J].甘肃农业大学学报, 2015, 50(6):31-36. http://www.cqvip.com/QK/94009X/201505/664745707.html [29] 石云素.玉米种质资源描述规范和数据标准[M].北京:中国农业出版社, 2006. [30] 盖钧镒, 章元明, 王建康.植物数量性状遗传体系[M].北京:科学出版社, 2003. [31] 盖钧镒.植物数量性状遗传体系的分离分析方法研究[J].遗传, 2005, 27(1):130-136. http://edu.wanfangdata.com.cn/Periodical/Detail/yc200501023 [32] 曹锡文, 刘兵, 章元明.植物数量性状分离分析Windows软件包SEA的研制[J].南京农业大学学报, 2013, 36(6):1-6. doi: 10.7685/j.issn.1000-2030.2013.06.001 [33] 李永祥, 王阳, 石云素, 等.玉米籽粒构型与产量性状的关系及QTL作图[J].中国农业科学, 2009, 42(2):408-418. http://d.old.wanfangdata.com.cn/Periodical/zgnykx200902004 [34] 杨俊品, 荣延昭, 向道权, 等.玉米数量性状基因定位[J].作物学报, 2005, 31(2):188-196. http://d.old.wanfangdata.com.cn/Periodical/zuowxb200502010 [35] 马金亮, 张春荣, 董华芳, 等.玉米果穗出子率QTL定位及上位性分析[J].河南农业大学学报, 2010, 44(3):233-237. http://www.cqvip.com/QK/97023X/201003/34466399.html [36] LIU X H, HR S L, ZHRNG Z P, et al. Identification of the quantitative trait loci for grain rate in maize[J]. African Journal of Biotechnology, 2010, 9(47):8007-8012. doi: 10.5897/AJB [37] LI J Z, ZHANG Z W, LI Y L, et al. QTL consistency and meta-analysis for grain yield components in three generations in maize[J]. Theoretical and Applied Genetics, 2011, 122(4):771. doi: 10.1007/s00122-010-1485-4 [38] 张伟强, 库丽霞, 张君, 等.玉米出籽率、籽粒深度和百粒重的QTL分析[J].作物学报, 2013, 39(3):455-463. doi: 10.7606/j.issn.1009-1041.2013.03.009 [39] 常立国, 何坤辉, 崔婷婷, 等.玉米出籽率的QTL定位及其与环境互作分析[J].农业生物技术学报, 2017, 25(4):517-525. http://www.jabiotech.org/CN/Y2017/V25/I4/517