Measurement and Convergence of Agricultural Total Factor Productivity Under the Carbon Emissions Constraints
-
摘要: 从农业增长与二氧化碳排放2个方面考虑,对1995-2014年中国省际种植业运用GML(Global Malmquist-Luenberger)指数测算碳排放约束下农业全要素生产率的增长,并与传统的Malmquist指数进行比较,同时对其收敛性进行检验。结果表明:碳排放约束下农业全要素生产率增长主要由技术进步推动或技术进步与技术效率的双重贡献。碳排放约束下农业全要素生产率的省际差异和区域差异明显。河北、辽宁、黑龙江和湖南4省的农业相对属于低碳农业。从地区差异来看,增速较快的地区是华中、华北和华东地区,西北和东北居中,华南和西南增速相对较慢。整体上来看各省之间存在技术扩散,呈现σ收敛但收敛趋势并不稳定;全国、华北、东北、华东、华中和华南地区,存在绝对β收敛,而在西南和西北地区并不存在绝对β收敛;对于全国及7个地区,均存在条件β收敛,即朝着各自稳定的状态发展。Abstract: Considering to both agriculture growth and carbon dioxide emission, growth of agricultural total factor productivity (TFP) of 30 provinces of China from 1995 to 2014 under carbon emissions constraints, were analyzed using the Global Malmquist-Luenberger, and were compared to the traditional Malmquist productivity index; and then the convergence of which were further examined. The results showed that:Agricultural total factor productivity growth under carbon emissions constrains was mainly owing to technical progress or both technical progress and technical efficiency.There were distinct differences among provincial and regional agricultural total factor productivity. The agriculture in Hebei, Liaoning, Heilongjiang and Hunan Province were low carbon. And the growth of agricultural total factor productivity was fast in central, north and east China, medium in northwest and northeast, but slow in south and southwest. A trend of σ convergence was shown among provinces, but not stable. There was absolute β convergence in whole, north, northeast, east, central and south China, but not in southwest and northwest areas. China and other seven areas showed conditional β convergence which developed toward stable states.
-
表 1 中国农业全要素生产率与分解 (1996-2014)
Table 1. Agricultural TFP and its components in China (1996-2014)
年份 GML指数 M指数 技术效率 技术进步 全要素生产率 技术效率 技术进步 全要素生产率 1996 0.9957 1.0864 1.0817 0.9970 1.0804 1.0772 1997 0.9947 0.9824 0.9772 1.0025 0.9969 0.9994 1998 0.9722 1.0165 0.9882 0.9709 1.0424 1.0121 1999 0.9959 0.9840 0.9800 1.0024 0.9940 0.9964 2000 0.9846 0.9638 0.9489 0.9841 0.9892 0.9735 “九五”平均 0.9886 1.0066 0.9952 0.9914 1.0206 1.0117 2001 0.9947 1.0240 1.0186 0.9930 1.0411 1.0338 2002 1.0160 0.9749 0.9905 1.0110 1.0140 1.0251 2003 0.9979 0.9818 0.9797 0.9633 1.0530 1.0143 2004 1.0737 1.0615 1.1397 1.0527 1.0856 1.1428 2005 0.9774 1.0454 1.0218 0.9876 1.0511 1.0380 "十五”平均 1.0119 1.0175 1.0301 1.0015 1.0490 1.0508 2006 0.9894 1.0735 1.0621 0.9865 1.0787 1.0641 2007 1.0206 1.0955 1.1180 0.9770 1.1327 1.1067 2008 1.0346 1.0639 1.1008 1.0764 1.0119 1.0893 2009 0.9922 1.0595 1.0512 0.9727 1.1031 1.0730 2010 1.0004 1.1678 1.1683 1.0103 1.1738 1.1859 “十一五”平均 1.0074 1.0920 1.1001 1.0046 1.1000 1.1038 2011 0.9925 1.1263 1.1179 1.0042 1.1189 1.1236 2012 1.0056 1.0848 1.0909 1.0211 1.0749 1.0976 2013 1.0033 1.0845 1.0881 0.9947 1.1064 1.1005 2014 0.9882 1.0605 1.0480 0.9955 1.0629 1.0581 “十二五”平均 0.9974 1.0890 1.0862 1.0039 1.0908 1.0950 平均值 1.0016 1.0493 1.0511 1.0002 1.0637 1.0638 表 2 各地区农业全要素生产率及其分解 (1996-2014)
Table 2. Agricultural TFP and its components of regions (1996-2014)
地区 GML指数 M指数 技术
效率技术
进步全要素
生产率技术
效率技术
进步全要素
生产率北京 1.0256 1.0740 1.1016 1.0256 1.0830 1.1107 天津 1.0000 1.0404 1.0404 1.0000 1.0527 1.0527 河北 1.0159 1.0571 1.0739 1.0086 1.0592 1.0684 山西 1.0040 1.0546 1.0589 1.0011 1.0620 1.0631 内蒙古 0.9860 1.0544 1.0396 0.9870 1.0600 1.0461 辽宁 0.9989 1.0623 1.0611 0.9989 1.0597 1.0585 吉林 0.9855 1.0423 1.0272 0.9821 1.0534 1.0346 黑龙江 1.0000 1.0493 1.0493 0.9910 1.0446 1.0352 上海 1.0000 1.0645 1.0645 1.0000 1.0751 1.0751 江苏 1.0009 1.0511 1.0521 1.0031 1.0664 1.0697 浙江 1.0010 1.0550 1.0561 1.0010 1.0665 1.0676 安徽 0.9791 1.0491 1.0272 0.9734 1.0608 1.0326 福建 1.0030 1.0490 1.0521 1.0030 1.0814 1.0846 江西 0.9755 1.0464 1.0208 0.9697 1.0706 1.0381 山东 1.0114 1.0651 1.0772 1.0114 1.0672 1.0793 河南 0.9937 1.0533 1.0467 0.9942 1.0739 1.0677 湖北 1.0000 1.0517 1.0517 0.9897 1.0633 1.0523 湖南 1.0528 1.0600 1.1160 1.0426 1.0613 1.1065 广东 1.0000 1.0459 1.0459 0.9977 1.0630 1.0606 广西 1.0007 1.0410 1.0418 1.0008 1.0643 1.0652 海南 1.0000 1.0120 1.0120 1.0000 1.0633 1.0633 贵州 1.0000 1.0273 1.0273 1.0000 1.0556 1.0556 云南 0.9912 1.0484 1.0392 0.9912 1.0656 1.0562 西藏 1.0000 1.0000 1.0000 0.9924 1.0212 1.0135 陕西 1.0076 1.0461 1.0541 1.0093 1.0868 1.0969 甘肃 0.9957 1.0497 1.0451 0.9957 1.0506 1.0461 青海 1.0031 1.0428 1.0460 1.0183 1.0589 1.0783 宁夏 0.9951 1.0711 1.0658 0.9951 1.0812 1.0759 新疆 1.0000 1.0325 1.0325 1.0000 1.0468 1.0468 四川 1.0156 1.0448 1.0611 1.0140 1.0625 1.0774 华北 1.0063 1.0561 1.0629 1.0045 1.0634 1.0682 东北 0.9948 1.0513 1.0459 0.9907 1.0526 1.0428 华东 0.9958 1.0543 1.0500 0.9945 1.0697 1.0639 华中 1.0155 1.0550 1.0715 1.0088 1.0662 1.0755 华南 1.0002 1.0330 1.0332 0.9995 1.0635 1.0630 西南 1.0017 1.0301 1.0319 0.9994 1.0512 1.0507 西北 1.0003 1.0484 1.0487 1.0037 1.0649 1.0688 表 3 碳排放约束下农业全要素生产率绝对收敛检验 (OLS回归)
Table 3. Absolute convergence of agricultural TFP under carbon emissions constraints (OLS regression)
地区 常数 ln (TFPi,t) F统计量 R2 全国 0.005*(10.724) -0.078*(-8.295) 68.808* 0.711 华北 0.006*(6.932) -0.111*(-5.685) 32.321** 0.915 东北 0.008**(15.060) -0.092***(-8.303) 68.939*** 0.985 华东 0.004*(6.330) -0.079*(-6.616) 43.777* 0.897 华中 0.004**(20.875) -0.065***(-6.948) 48.280*** 0.980 华南 0.003**(20.141) -0.054**(-18.540) 343.733*** 0.997 西南 0.007(2.390) -0.091 (-2.068) 4.280 0.682 西北 0.004(3.785) -0.0660(1.645) 2.707 0.474 注:*、**、***分别表示在1%、5%和10%水平显著;括号中数字为t统计量,表 4同。 表 4 碳排放约束下农业全要素生产率条件收敛检验
Table 4. Conditional convergence of agricultural TFP under carbon emissions constraint (Fixed-effect model)
地区 常数项 ln (TFPi,t) F统计量 调整后R2 全国 0.055*(9.792) -1.151*(-12.550) 6.773* 0.568 华北 0.084*(3.631) -1.200*(-4.633) 2.918** 0.418 东北 0.050*(4.792) -0.742***(-2.347) 16.422* 0.885 华东 0.038*(3.768) -0.511**(-2.758) 2.962** 0.388 华中 0.130*(3.714) -1.494*(-4.632) 4.130** 0.610 华南 0.029(1.502) -0.916**(-2.678) 2.863*** 0.482 西南 0.043**(3.081) -1.602*(-6.767) 8.101* 0.749 西北 0.078*(5.543) -1.312*(-5.123) 14.074* 0.831 -
[1] 孙传旺, 刘希颖, 林静.碳强度约束下中国全要素生产率测算与收敛性研究[J].金融研究, 2010, (6):17-33. http://www.cnki.com.cn/Article/CJFDTOTAL-JRYJ201006005.htm [2] FÄRE R, GROSSKOPF S, LOVELL C A K, et al.Multilateral productivity comparisons when some outputs are undesirable:a nonparametric approach[J]eview of Economics and Statistics, 1989, 71:90-98. doi: 10.2307/1928055 [3] FÄRE R, GROSSKOPF S. New Directions:Efficiency and Productivity[M].London Kluwer Acedemic Publishers, 2003. [4] TONE K. Dealing with undesirable outputs in DEA:a Slacks-Based Measure (SBM) approach[R]. GRIPS Research Report Series 2003-12-03.Tokyo:GRIPS Policy Information Center, 2003:1-20. [5] COELLI T, LAUWERS L, VAN HUYLENBROECK G. Environmental efficiency measurement and the materials balance condition[J]. Journal of Productivity Analysis, 2007, 28:3-12. doi: 10.1007/s11123-007-0052-8 [6] HOANG V N, COELLI T. Measurement of Agricultural Total Factor Productivity Growth Incorporating environmental Factors:A Nutrients Balance Approach[J]. Journal of Enviromental Economics and management, 2011, 62(3):462-474. doi: 10.1016/j.jeem.2011.05.009 [7] KENNETH LOVOLD RODSETH.Environmental efficiency measurement and the materials balance condition reconsidered[J].European Journal of Operational Research, 2016, 250(1):342-346. doi: 10.1016/j.ejor.2015.10.061 [8] 李谷成, 陈宁陆, 闵锐.环境规制条件下中国农业全要素生产率增长与分解[J].中国人口·资源与环境, 2011, 21(11):153-160. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201111027.htm [9] 杨俊, 陈怡.基于环境因素的中国农业生产率增长研究[J].中国人口·资源与环境, 2011, 21(6):153-157. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201106027.htm [10] 潘丹, 应瑞瑶.资源环境约束下的中国农业全要素生产率增长研究[J].资源科学, 2013, 35(7):1329-1338. http://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201307001.htm [11] 韩海彬, 赵丽芬.环境约束下中国农业全要素生产率增长及收敛分析[J].中国人口·资源与环境, 2013, 23(3):70-76. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201303011.htm [12] 叶初升, 惠利.农业生产污染对经济增长绩效的影响程度研究——基于环境全要素生产率的分析[J].中国人口·资源与环境, 2016, 26(4):116-125. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201604015.htm [13] 张可, 丰景春.强可处置性视角下中国农业环境效率测度及其动态演进[J].中国人口·资源与环境, 2016, 26(1):140-149. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201601019.htm [14] 杜江, 王锐, 王新华.环境全要素生产率与农业增长:基于DEA-GML指数与面板Tobit模型的两阶段分析[J].中国农村经济, 2016, (3):65-81. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201603008.htm [15] 田伟, 杨璐嘉, 姜静.低碳视角下中国农业环境效率的测算与分析——基于非期望产出的SBM模型[J].中国农村观察, 2014, (5):59-71. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNCG201405007.htm [16] 田云, 张俊彪, 吴贤荣, 等.碳排放约束下的中国农业生产率增长与分解研究[J].干旱区资源与环境, 2015, (11):7-12. http://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201511002.htm [17] 崔晓, 张屹山.中国农业环境效率与环境全要素生产率分解[J].中国农村经济, 2014, 356(8):4-16. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ201408003.htm [18] CHUNG Y H, FÄRE R, GROSSKOPF S. Productivity and Undesirable Outputs:A Directional Distance FunctiApproach[J].Journal of Environmental Management, 1997, 51(3):229-240. doi: 10.1006/jema.1997.0146 [19] Oh D H. A global Malmquist-Luenberger productivity index[J].Journal of Productivity Analysis, 2010, 34(3):183-197. doi: 10.1007/s11123-010-0178-y [20] 李波, 张俊彪, 李海鹏.中国农业碳排放时空特征及影响因素分解[J].中国人口·资源与环境, 2011, (8):80-86. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201108014.htm