Spatial Distribution of Water Repellency of Soils on Plots Planted with Different Crops in Karst Regions
-
摘要: 以广西桂林市农业科学院大豆、甘蔗及梨树植被覆盖的土壤为例,研究不同土地利用模式下土壤斥水性的空间变化。通过对每个试验区面积为135 m×105 m的100个测量点应用滴水穿透时间法(water drop penetration time,WDPT)进行土壤斥水性测量,利用土壤含水量确定干旱(0.062±0.025)cm3·cm-3、中等(0.151±0.045)cm3·cm-3和湿润(0.237±0.086)cm3·cm-3的土壤水分条件。运用地统计方式,对土壤斥水性进行空间变化分析。结果表明:在干旱和湿润水分条件下,WDPT的大小均表现出梨树地最大,甘蔗地次之,大豆地最小,与土壤含水量和有机质大小的变化一致,但是在中等水分条件下,WDPT均值大豆地高于甘蔗地,同时3个试验区的滴水入渗持续时间都达到最大。土壤斥水性的地统计分析结果表明,在3种水分条件下,3个试验区的空间结构比基本上大于75%,空间相关性较强。在土壤斥水性的高阈值空间分布上,甘蔗地的稳定性比大豆地强,而梨树的空间分布稳定性最弱。研究结果说明人类的活动会对土壤斥水性空间稳定性产生干扰,但土壤本身仍具有恢复其空间分布稳定性的能力。Abstract: Spatial distribution of water repellency of the soils from plots planted with different crops was studied under the dry, moderately or wet soil conditions. Soybeans, sugarcane or pear trees were grown on the plots in the karst region near Guilin Institute of Agricultural Sciences in Guangxi. The spatial distribution of water repellency in the soils from the plots was determined by using a geostatistical analysis on the plots of 135 m×105 m in size. There were 100 sampling points on each plot for measurement of water drop penetration time (WDPT). The soils were also classified according to their moisture content as dry (0.062±0.025) cm3·cm-3, moderately (0.151±0.045) cm3·cm-3 or wet (0.237±0.086) cm3·cm-3. The results showed that, under dry and wet conditions, the greatest WDPT and contents of moisture and organic matters were found in the soil where pear trees were grown, while the lowest on the soybean plot. However, under the moderately wet soil condition, the lowest values on these parameters were on the sugarcane plot. Meanwhile, the water retention time reached a maximum for all plots. It appeared that geostatiatical analysis significant correlation existed among the spatial distribution of water repellencies in 3 planting plots under 3 soil conditions as the ratio was substantially greater than 75%.Due to the high threshold water repellency distribution, the soil at the sugarcane plot seemed to be more stable than that at the soybean field, while that at the pear tree plot being the weakest of all. It suggested that the soils might be able to recover spatial distribution of water repellency after being disturbed by human activity.
-
Key words:
- vegetation coverage /
- soil moisture content /
- WDPT /
- geostatistical analysis /
- spatial distribution
-
表 1 3个试验区的土壤质地、容重 (BD)、总孔隙度 (TP) 和有机质 (SOM)
Table 1. Texture, bulk density (BD), total porosity (TP) and soil organic matters (SOM) of soils on 3 planting plots
试验区 砂粒
/%粉粒
/%粘粒
/%容重/
(g·cm-3)总孔隙度
/%土壤有机质
/(g·kg-1)梨树地 41.99±1.4a 20.92±1.6a 37.09±1.9a 1.27±0.03b 45.84±0.05a 15.29±0.41b 甘蔗地 35.67±2.1b 26.28±1.8a 38.05±2.2a 1.29±0.04b 47.78±0.6a 13.36±0.34a 大豆地 37.11±1.7b 25.68±1.3a 37.21±2.1a 1.38±0.02a 45.17±0.7a 11.41±0.25a 注:同列数据后不同小写字母表示差异显著 (P < 0.05),n=7。 表 2 土壤3种湿度状态下土壤含水量和WDPT
Table 2. Moisture content and water repellency in soils under 3 soil conditions
土壤湿度状态 试验区 含水量均值/
(cm3·cm-3)标准误差/
(cm3·cm-3)WDPT均值
/s标准误差
/s干旱 大豆地 0.043 0.001 6.14 0.039 甘蔗地 0.056 0.002 6.15 0.040 梨树地 0.087 0.003 7.75 0.081 中等 大豆地 0.121 0.004 8.11 0.132 甘蔗地 0.137 0.004 7.79 0.081 梨树地 0.196 0.005 9.01 0.086 湿润 大豆地 0.163 0.003 6.60 0.063 甘蔗地 0.226 0.006 7.36 0.062 梨树地 0.323 0.009 8.81 0.080 表 3 土壤斥水性在土壤湿度的3种状态下地统计分析结果
Table 3. Geostatistics on water repellency in soils under 3 soil conditions
土壤水分条件 试验区 最大相关距离
/m块金值
C0偏基台值
C基台值
(C+C0)空间结构比K
/%干旱 大豆地 29.92 3.57E-02 1.11E-01 1.47E-01 75.71 甘蔗地 28.49 2.65E-02 1.23E-01 1.50E-01 82.31 梨树地 28.84 6.18E-02 4.90E-01 5.52E-01 88.81 中等 大豆地 66.57 1.87E-01 1.30E+00 1.49E+00 87.41 甘蔗地 144.30 1.76E-01 4.90E-01 6.66E-01 73.58 梨树地 27.50 9.52E-02 5.18E-01 6.13E-01 84.49 湿润 大豆地 177.92 2.40E-01 1.22E-01 3.62E-01 33.76 甘蔗地 207.20 2.29E-01 1.34E-01 3.64E-01 36.96 梨树地 35.97 1.99E-02 5.67E-01 5.87E-01 96.62 -
[1] YANG BANGJIE, BLACKWELL P S, NICHOLSON D F. Modeling heat and water movement in a water repellent sandy soil[J].Acta Pedologica Sinica, 1996, 33(4):351-359. http://pedologica.issas.ac.cn/trxben/ch/reader/view_abstract.aspx?file_no=19960404&flag=1 [2] BACHMANN J, HORTON R, PLOEG R R, et al.Modified sessile dropmethod for assessing initial soil-water contact angle of sandy soil[J].Soil Science Society of America Journal, 2000, 64(2):564-567. doi: 10.2136/sssaj2000.642564x [3] 陈俊英, 张智韬, 杨飞, 等.土壤的斥水性和含水量变化关系的数学模型[J].灌溉排水学报, 2009, (6):35-38. http://www.cnki.com.cn/Article/CJFDTOTAL-GGPS200906008.htm [4] MARÍA RODRÍGUEZ-ALLERES, ESTHER DE BLAS, ELENA BENITO. Estimation of soil water repellency of different particle size fractions in relation with carbon content by different methods[J]. Science of the Total Environment, 2007, 378:147-150. doi: 10.1016/j.scitotenv.2007.01.034 [5] MASAMI FUTAMATA, XIAOHUI GAI, HIDENOBU ITOH.Improvement of water repellency homogeneity by compound fluorine carbon sprayed coating and silane treatment[J]. Vacuum, 2004, 73:519-525. doi: 10.1016/j.vacuum.2003.12.072 [6] WAHL N A, BENS O, SCHAFER B. Impact of changes in land-use management on soil hydraulic properties:Hydraulic conductivity, water repellency and water retention[J].Physics and Chemistry of the Earth, 2003, 28(33):1377-1387. https://www.researchgate.net/publication/228702980_Impact_of_changes_in_land-use_management_on_soil_hydraulic_properties_Hydraulic_conductivity_water_repellency_and_water_retention?_sg=8NiXp1PASgymeo5n9uC7CdWGB4yCu8Rc9vrambrXi1g91XAlRyd4Q5sP_HP3ZBV63vqyedDaB_HDIBWqLUEyyQ [7] GHADIM A K. Water repellency:a whole-farm bio-economic perspective[J]. J Hydrol, 2000, 231/232:396-405. doi: 10.1016/S0022-1694(00)00211-0 [8] 孙棋棋, 刘前进, 于兴修, 等.沂蒙山区桃园棕壤斥水性对理化性质的空间响应[J].土壤学报, 2014, (3):648-655. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201403025.htm [9] 郭丽俊, 李毅, 李敏, 等.盐渍化农田土壤斥水性与理化性质的空间变异性[J].土壤学报, 2011, (2):277-285. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201102007.htm [10] LETEY J. Measurement of contact angle, water drop penetration time, and critical surface tension[C]//DeBano L F and Letey J (Eds.), Water repellent soils-Proceedings of the Symposium on Water Repellent Soils. CA:University of California Riverside, 1969:43-47. [11] 李亮亮, 依艳丽, 凌国鑫, 等.地统计学在土壤空间变异研究中的应用[J].土壤通报, 2005, (2):265-268. http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB200502029.htm [12] CAMBARDELLA C A, MOORMAN, et al. Field scale variability of soil properties in Central Iowa soils[J]. Soil Sci Soc Am J, 1994, 58:1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x [13] 杨昊天, 刘立超, 高艳红, 等.腾格里沙漠沙丘固定后土壤的斥水性特征研究[J].中国沙漠, 2012, (3):674-682. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201203016.htm [14] DOERRA S H, THOMASB A D. The role of soil moisture in controlling water repellency:new evidence from forest soils in Portugal[J]. Journal of Hydrology, 2000, 231-232:134-147. doi: 10.1016/S0022-1694(00)00190-6 [15] 李子忠, 吴延磊, 龚元石, 等.内蒙古草原土壤斥水性的季节变化[J].干旱地区农业研究, 2010, (2):208-213. http://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ201002043.htm [16] BISDOM E B A, DEKKER L W, SCHOUTE J F T.Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure[J]. Geoderma, 1993, 56(1/4):105-118. [17] HUMBERTO BLANCO CANQUI, LAL R.Extent of soil water repellency under long-term no-till soils[J].Geoderma, 2009, 149(1-2):171-180. doi: 10.1016/j.geoderma.2008.11.036 [18] 霍颖, 张杰, 王美超, 等.梨园行间种草对土壤有机质和矿质元素变化及相互关系的影响[J].中国农业科学, 2011, (7):1415-1424. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201107015.htm [19] 李青山, 王冬梅, 信忠保, 等.漓江水陆交错带典型立地根系分布与土壤性质的关系[J].生态学报, 2014, (8):2003-2011. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201408011.htm [20] 陈俊英, 张智韬, 汪志农, 等.土壤斥水性影响因素及改良措施的研究进展[J].农业机械学报, 2010, (7):84-89, 83. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201007017.htm [21] 陈俊英, 吴普特, 张智韬, 等.土壤斥水性对含水率的响应模型研究[J].农业机械学报, 2012, (1):63-67, 82. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201201012.htm [22] GAN L, PENG X, PETH S, et al.2012b.Effects of grazing intensity on soil water regime and flux in Inner Mongolia Grassland, China[J]. Pedosphere, 22(22):165-177. https://www.researchgate.net/publication/233726332_Effects_of_Grazing_Intensity_on_Soil_Water_Regime_and_Flux_in_Inner_Mongolia_Grassland_China [23] 张继光, 苏以荣, 陈洪松, 等.典型岩溶洼地土壤水分的空间分布及影响因素[J].生态学报, 2014, (12):3405-3413. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201412029.htm [24] 庄恒扬, 刘世平, 沈新平, 等.长期少免耕对稻麦产量及土壤有机质与容重的影响[J].中国农业科学, 1999, (4):41-46. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK904.006.htm [25] 甘磊, 马蕊, 彭扬建, 等.不同放牧强度下羊草和大针茅草原土壤含水量的空间变化[J].生态环境学报, 2015, (8):1274-1279. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ201508003.htm [26] 甘磊, 陶涣壮, 张静举, 等.桂林地区不同土地利用方式下土壤热容量空间变化的研究[J].西南农业学报, 2016, (2):368-373. http://www.cnki.com.cn/Article/CJFDTOTAL-XNYX201602029.htm