Effects of Shading on Photosynthesis and Flower Bud Differentiation of Vanilla Plants
-
摘要: 为探讨适宜香草兰生长发育的遮阴度,试验设50%、75%和90%这3种不同遮阴度的遮阴网处理,测定各处理条件下植株叶片的叶绿素相对含量和叶绿素荧光等光合参数,并跟踪统计各处理条件下的花芽分化率。结果表明:较低遮阴度不利于香草兰叶绿素形成;在一定范围内,表观量子效率(AQY)、实际光化学效率(ФPSⅡ)和天线转化效率(Fv'/Fm')随遮阴度增加而增加;净光合速率(Pn)、气孔导度(Gs)、光饱和点(LSP)、暗呼吸速率(Rd)、PSII的潜在活性(Fv/Fo)、最大光化学效率(Fv/Fm)、表观光合电子传递速率(ETR)和光化学淬灭系数(qP)都随遮阴度增加呈先增加后降低的趋势;75%遮阴度下花芽分化率最高,达到54.98%。可见,香草兰适宜在遮阴度为75%的栽培条件下生长,生产中可参考应用。Abstract: Field experiments were conducted on cultivation with varied shading materials over the plants to examine their effects on the photosynthesis and flower bud differentiation of vanilla. The shading materials provided 50%, 75%, and 90% shades. Three months after the treatments, the relative chlorophyll content, photosynthetic physiology and chlorophyll fluorescence of the plants were determined. In the following April, ratios of the flower bud formation were recorded. The results showed that the low shading was unfavorable for the chlorophyll formation on the plants. Within a certain range of the shading, the apparent quantum yield (AQY), effective quantum yield of photosystemⅡ(ФPSⅡ) and efficiency of excitation captured by open PSII center (Fv'/Fm') increased with increasing shading. On the other hand, the net photosynthetic rate (Pn), stomatal conductance (Gs), light saturation point (LSP), dark respiration rate (Rd), potential photochemical efficiency (Fv/Fo), maximum photochemical efficiency (Fv/Fm), electron transport rat (ETR) and photochemical quenching coefficient (qP) increased initially and then decreased with increasing shading. The rate of flower bud formation was up to 54.98% with the 75% shading. Thus, it appeared that 75% shading could be conducive to the vanilla growth, and applicable for its cultivation.
-
Key words:
- vanilla /
- photosynthesis /
- flower bud differentiation /
- shading treatment
-
表 1 测定日 (2015年10月10日) 各处理小气候状况
Table 1. Microclimatic conditions on day of treatments, October 10, 2015
处理 温度
/℃大气CO2浓度
/(μmol·mol-1)光量子通量密度
/(μmol·m-2·s-1)相对湿度
/%未遮阴 27.6 393.4 1016.5 55.6 S1 28.1 391.7 465.5 56.2 S2 27.8 392.6 240.3 56.5 S3 29.2 388.5 169.6 56.1 表 2 不同遮阴处理对香草兰叶片光合生理参数的影响
Table 2. Effect of shading on photosynthetic physiology of vanilla plants
处理 净光合速率/
(μmol·m-2·s-1)气孔导度/
(mol·m-2·s-1)胞间CO2浓度/
(μmol·mol-1)蒸腾速率/
(mmol·m-2·s-1)水分利用效率/
(μmol·mmol-1)S1 0.32±0.03b 0.009±0.003b 258.46±17.56ab 0.72±0.17a 0.46±0.14b S2 0.48±0.07a 0.021±0.005a 247.65±26.26b 0.61±0.10a 0.78±0.14a S3 0.45±0.15ab 0.018±0.005a 285.27±27.85a 0.49±0.03b 0.92±0.32a 注:同列数据后不同小写字母表示差异达显著 (P < 0.0) 水平。下表同。 表 3 不同遮阴处理对香草兰叶片光响应参数的影响
Table 3. Effect of shading on photosynthetic parameters in response curves for vanill
处理 最大净光合速率
/(μmol·m-2·s-1)光饱和点
/(μmol·m-2·s-1)光补偿点
/(μmol·m-2·s-1)暗呼吸速率
/(mmol·m-2·s-1)表观量子效率 S1 0.35±0.05b 197.75±21.38a 69.76±5.61a 0.11±0.03b 0.014±0.003b S2 0.51±0.06a 223.10±22.44a 58.11±7.17b 0.31±0.06a 0.023.±0.006a S3 0.47±0.08a 215.60±17.64a 66.83±8.51ab 0.17±0.04b 0.025±0.003a 表 4 不同遮阴处理对香草兰Fo、Fm、Fv/Fm和Fv/Fo的影响
Table 4. Effect of shading on Fo, Fm, Fv/Fm and Fv/Fo of vanilla plants
处理 F0 Fm Fv Fv/ Fm Fv/ F0 S1 0.306±0.041a 0.813±0.082a 0.508±0.043a 0.625±0.015b 1.662±0.110b S2 0.137±0.007b 0.493±0.018b 0.356±0.025b 0.723±0.025a 2.610±0.323a S3 0.136±0.016b 0.464±0.037b 0.328±0.053b 0.707±0.057a 2.411±0.715a -
[1] 王庆煌, 朱自慧, 宋应辉, 等.香草兰[M].北京:中国农业出版社, 2004:15-22. [2] 张能义, 刀详生, 李存信.不同荫蔽度下种植香荚兰的光合作用和生长发育[J].云南植物研究, 1993, 15(1):71-77. http://www.cnki.com.cn/Article/CJFDTOTAL-YOKE199301010.htm [3] 朱自慧, 赖剑雄, 梁淑云.香草兰栽培及初加工技术[M].海口:海南出版社, 2010:6-15. [4] 庄辉发, 王辉, 王华, 等.不同间作模式香草兰光合作用与产量的研究[J].江苏农业科学, 2012, 40(9):177-178. http://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201209076.htm [5] 邹琦.植物生理学实验指导[M].北京:中国农业出版社, 2000. [6] 李鹏民, 高辉远.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报, 2005, 31(6):559-566. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSI200506001.htm [7] 王辉, 庄辉发, 宋应辉, 等.不同密度槟榔间作对香草兰叶绿素荧光特性的影响[J].热带农业科学, 2012, 32(11):4-6. http://www.cnki.com.cn/Article/CJFDTOTAL-RDNK201211003.htm [8] 叶子飘, 李进省.光合作用对光响应的直角双曲线修正模型和非直角双曲线模型的对比研究[J].井冈山大学学报 (自然科学版), 2010, 31(3):38-44. http://www.cnki.com.cn/Article/CJFDTOTAL-JGSS201003010.htm [9] KITAO M, UTSUGI H, KURAMOTO S. Light-dependent photosynthetic characteristics indicated by Chlorophyll fluorescence in five mangrove species native to Pohnpei Island[J].Micronesia. Physiol Plant, 2003, (117):376-382. https://www.researchgate.net/publication/10841016_Light-dependent_photosynthetic_characteristics_indicated_by_chlorophyll_fluorescence_in_five_mangrove_species_native_to_Pohnpei_Island_Micronesia [10] 范晓明, 袁德义, 杨斐翔, 等.锥栗不同树体结构对光的响应[J].生态学报, 2015, 35(22):7426-7434. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201522016.htm [11] 朱峰, 王长发, 苗芳, 等.冬小麦品种 (系) 叶绿素荧光参数的因子分析[J].麦类作物学报, 2010, 30(2):290-295. http://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201002020.htm [12] 王辉, 庄辉发, 王华, 等.香草兰单株产量构成性状的通径分析[J].安徽农业科学, 2010, 38(29):16198-16199. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY201029049.htm [13] MAO L Z, WANG Q.Comparative photosynthesis characteristics of Calycanthus chinensis and Chimonanthus praecox[J].Photosynthetica, 2007, 45(4):601-605. doi: 10.1007/s11099-007-0103-4 [14] 许正刚, 史正军, 谢良生, 等.遮荫处理下两种园林植物叶绿素含量及荧光参数的研究[J].甘肃科技, 2009, 25(3):158-160. http://www.cnki.com.cn/Article/CJFDTOTAL-GSKJ200903061.htm [15] 张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4):444-448. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWXT199904020.htm [16] 匡双便, 徐祥增, 孟珍贵, 等.不同透光率对三七生长特征及根皂苷含量的影响[J].应用与环境生物学报, 2015, 21(2):279-286. http://www.cnki.com.cn/Article/CJFDTOTAL-YYHS201502016.htm [17] 余婷, 周兰英, 张帆, 等.遮阴对凤仙花生长和开花的影响[J].东北林业大学学报, 2015, 43(1):57-60. http://www.cnki.com.cn/Article/CJFDTOTAL-DBLY201501015.htm