Effects of Percarbamide and Two Nitrogenous on pH, Nitrogen Transformation, and Exchangeable Metal Ions in Soil from Banana Plantations
-
摘要: 通过对香蕉土壤进行室内土培试验,研究过碳酰胺、尿素和硫酸铵对香蕉土壤pH、氮素转化和6种交换性金属离子(Al、Mn、Cu、Ca、Mg、Fe)含量的影响。静态和动态试验结果表明,土壤的pH值随着过碳酰胺和尿素含量增加而升高,而随着硫酸铵含量增加土壤的pH值变化不大。过碳酰胺、尿素和硫酸铵培养的土壤,随着培养天数的增加,土壤pH值呈下降趋势,与交换性铝呈负相关;土壤pH值与土壤中的铵态氮含量呈现负相关;与硝态氮的含量呈现正相关;与土壤中的交换性Mn、Ca、Mg的含量呈现负相关,与交换性Cu的含量呈现正相关。交换性Fe含量在3种肥料处理过程没有显著变化。Abstract: Effects of percarbamide, urea, and ammonium sulphate on the pH, nitrogen transformation, and contents of exchangeable metal ions, i.e., Mn, Cu, Ca, Mg, Fe and Al, in soil from banana plantations were studied in an indoor incubation experiment that included a static and a dynamic test. The results from the static test showed that the soil pH increased with increasing percarbamide and urea, but it did not responded to the added ammonium sulfate, while the exchangeable Al was negative correlated with pH in the soil. The dynamic test demonstrated that the soil pH decreased with a prolonged incubating time, as the exchangeable Al had a negative correlation with the soil pH; and, the ammonium nitrogen in soil increased initially and followed by a decrease to reach a constant state till the end, while the nitrate nitrogen content tended to rise continuously. On the exchangeable metal ions, the concentrations of Mn and Mg showed an upward trend, that of Cu increased at first and then decreased, and that of Ca decreased initially but increased later on in the soil with a percarbamide application. In the soil with added urea, Mn, Ca and Mg showed an overall increasing trend, and Cu a downward trend, while Fe appeared unaffected. Whereas, the application of ammonium sulphate resulted in general declines on Mn, Ca and Cu with an increase on Mg in the soil, while no significant difference on Fe.
-
Key words:
- percarbamide /
- urea /
- ammonium sulphate /
- pH /
- nitrogen transformation /
- exchangeable metal ions
-
表 1 香蕉土壤理化性质
Table 1. Physicochemical properties of soil from banana plantations
土壤
类型pH 有机质
含量/
(g·kg-1)交换性金属/(mg·kg-1) Al Mn Cu Ca Mg Fe 香蕉土 6.4 0.13 2.732 27.91 5.87 411.56 146.11 17.83 表 2 香蕉土壤pH随过碳酰胺、尿素和硫酸铵浓度的变化(7d)
Table 2. Changes of soil pH with varied addition levels of percarbamide, urea or ammonium sulphate in 7 days
肥料
类型肥料浓度/(mmol·kg-1) 0 5 15 25 40 60 过碳酰胺 5.37 5.63e 6.28d 7.06c 8.09b 8.38a 尿素 5.55 5.66e 6.33d 6.91c 7.94ab 8.31a 硫酸铵 5.47 4.99a 5.00a 5.02a 4.91a 4.94a 注:表中同行数据为平均值,同行数据中字母相同表示差异不显著,字母不同表示差异显著(P < 0 05)。下表同。 表 3 分别施加过碳酰胺、尿素及硫酸铵后香蕉土壤pH的短期变化
Table 3. Short-term changes of soil pH with varied addition levels of percarbamide, urea or ammonium sulphate
肥料类型 培养时间/d 0 1 3 5 7 9 11 13 过碳酰胺 5.37 5.00e 8.56a 8.38ab 8.23b 7.39c 7.26cd 6.90d 尿素 5.55 8.75a 8.54ab 8.39b 7.68c 7.19d 7.17d 6.40e 硫酸铵 5.47 5.18c 5.77a 5.58ab 5.38b 5.19c 5.11c 4.83d 表 4 分别施加过碳酰胺、尿素及硫酸铵后香蕉土壤pH的长期变化
Table 4. Long-term changes of soil pH with varied addition levels of percarbamide, urea or ammonium sulphate
肥料类型 培养时间/周 0 1 2 3 4 5 6 7 过碳酰胺 5.37 8.23a 6.90b 5.26c 5.34c 4.86d 5.11cd 4.28e 尿素 5.55 7.68a 6.40b 4.76c 4.71c 4.45cd 4.37cd 4.36cd 硫酸铵 5.47 5.38a 4.83b 4.47b 4.41bc 4.35bc 4.33bc 4.25c -
[1] 吴川德, 董存明, 傅友强, 等.生物有机肥对香蕉长势及生物量的影响[J].广州农业科学, 2013, (16):73-75. http://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201316026.htm [2] 魏方稳, 郑德龙, 陈福梓, 等.漳州市香蕉生长的气象条件分析[J].福建热作科技, 2012, 37(4):53-55. http://www.cnki.com.cn/Article/CJFDTOTAL-FJRK201204020.htm [3] 李国良, 姚丽贤, 张育灿, 等.不同施肥方式对香蕉生长和产量的影响[J].中国农学通报, 2010, 27(6):188-192. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201106039.htm [4] 乔秀丽, 田军.二次逐步回归优化制备过碳酰胺工艺[J].应用化工, 2012, 41(11):1980-1982. http://www.cnki.com.cn/Article/CJFDTOTAL-SXHG201211035.htm [5] 张晓玲, 张志成.过碳酰胺消毒液对金属腐蚀性的实验观察[J].中国消毒学杂志, 2008, 25(1):82. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGXD200801044.htm [6] 胡茵, 何程光.过碳酰胺在牙粉中的应用[J].口腔护理用品工业, 2011, 21(4):19-20. http://www.cnki.com.cn/Article/CJFDTOTAL-YGGY201104008.htm [7] 钟宁, 曾清如, 李顺兴, 等.过碳酰胺对土壤中非离子表面活性剂的修复研究[J].土壤, 2009, 41(6):947-951. http://www.cnki.com.cn/Article/CJFDTOTAL-TURA200906017.htm [8] 李国良, 姚丽贤, 张育灿, 等.不同施肥方式对香蕉生长和产量的影响[J].中国农学通报, 2010, 27(6):188-192. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201106039.htm [9] 胡悦, 饶猛刚, 吕富洋.绿色环保肥料腐殖酸尿素[J].科技向导, 2013, (26):218. http://www.cnki.com.cn/Article/CJFDTOTAL-KJZF201326204.htm [10] GUO J H, LIU X J, ZHANG Y, et al.Significant Acidification in Major Chinese Croplands[J]. Science, 2010, 327(59):1008-1010. [11] ZHANG H M, WANG B R, XU M G.Effects of Inorganic Fertilizer In pus on Grain Yields and Soil Properties in a Long-Term Wheat-Corn Cropping System in South China[J].Communication in Soil Science and Plant Analysis, 2008, 39(11):1583-1599. [12] 佟德利, 徐仁扣, 顾天夏.施用尿素和硫酸铵对红壤硝化和酸化作用的影响[J].生态与农村环境学报, 2012, 28(4):404-409. http://www.cnki.com.cn/Article/CJFDTOTAL-NCST201204014.htm [13] 栗方亮, 李忠佩, 李忠佩, 等.硫酸铵施用量和温度对红壤稻田土硝化作用及微生物特性的影响[J].生态与农村环境学报, 2012, 28(4):410-415. http://www.cnki.com.cn/Article/CJFDTOTAL-NCST201204016.htm [14] 李德新.过碳酰胺合成工艺研究[J].郑州工业大学学报, 1997, 18(4):112-115. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZGY704.023.htm [15] 《化工商品检测手册》编委会.化工商品检测手册[M].北京:化学工业出版社, 1996:278. [16] 张英.新型固体杀菌消毒剂的研究[J].广西工学院学报, 2000, 11(2):23-25. http://www.cnki.com.cn/Article/CJFDTOTAL-GXGX200002006.htm [17] 景丽洁, 马甲.火焰原子吸收分光光度法测定污染土壤中5种重金属[J].中国土壤与肥料, 2009, (1):74-77. http://www.cnki.com.cn/Article/CJFDTOTAL-TRFL200901020.htm [18] 王海涛, 郑天凌, 杨小茹.土壤反硝化的分子生态学研究进展及其影响因素[J].农业环境科学学报, 2013, 32(10):1915-1924. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201310004.htm [19] 钟宁, 曾清如, 廖柏寒, 等.过碳酰胺在酸碱性土壤中的转化特征[J].农业环境科学学报, 2006, 25(3):716-721. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200603034.htm [20] 鲁如坤, 时正元, 赖庆旺.红壤养分退化(Ⅱ)-尿素和碳铵在红壤中的转化[J].土壤通报, 1995, 26(6):241-243. http://www.cnki.com.cn/Article/CJFDTOTAL-TRTB506.000.htm [21] 邢承华, 朱美红, 张淑娜, 等.磷对铝胁迫下荞麦根际土壤铝形态和酶活性的影响[J].生态环境学报, 2009, 18(5):1944-1948. http://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ200905068.htm [22] 刘星, 尤江峰, 谢忠雷, 等.石墨炉原子吸收光谱法测定土壤铝的条件优化[J].农业环境科学学报, 2011, 30(2):404-408. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201102032.htm [23] 钱诚, 张逸, 任继鹏, 等.南方酸性森林土壤中铝活化过程参数化模型的建立与验证[J].环境化学, 2011, 30(6):1136-1139. http://www.cnki.com.cn/Article/CJFDTOTAL-HJHX201106017.htm [24] LIU J G, DIAMOND J.Revolutionizing China's environmental protection[J]. Science, 2008, 319:37-38. doi: 10.1126/science.1150416 [25] TANG J, XU X B, BA J, et al. Trends of the precipitation acidity over China during 1992-2006[J]. Chinese Sci. Bull, 2010, 55(17):1800-1807. doi: 10.1007/s11434-009-3618-1 [26] 徐仁扣, 季国亮.pH对酸性土壤中铝的溶出和铝离子形态分布的影响[J].土壤学报, 1998, 35(2):162-171. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB199802002.htm [27] 钟宁, 李顺兴, 曾清如, 等.过碳酰胺施用对中国南方六种土壤pH及活性铝短期变化的影响[J].漳州师范学院学报:自然科学版, 2008, 21(2):74-77. http://www.cnki.com.cn/Article/CJFDTOTAL-ZSXZ200802017.htm [28] 钟宁, 曾清如, 张利田, 等.过碳酰胺对红壤pH、活性铝含量及玉米幼苗生长的影响[J].中国农学通报, 2006, 22(2):353-357. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB200602095.htm [29] 皮荷杰, 曾清如, 蒋朝晖, 等.两种硝化抑制剂对不同土壤中氮素转化的影响[J].水土保持学报, 2009, 23(1):68-72. [30] 沈灵凤, 白玲玉, 曾希柏, 等.施肥对设施菜地土壤硝态氮累积及pH的影响[J].农业环境科学学报, 2012, 31(7):1350-1356. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201207017.htm [31] 钟宁, 曾清如, 廖柏寒, 等.过碳酰胺在酸碱性土壤中的转化特征[J].农业环境科学学报, 2006, 25(3):716-721. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH200603034.htm [32] 杨艳, 李明, 柴跃东, 等.红塔区植烟土壤pH值对Zn、Mn有效态含量的影响研究[J].云南农业科技, 2009, (4):31-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YNKJ200904017.htm [33] 郭朝晖, 廖柏寒, 黄昌勇, 等.酸雨中SO42-、NO3+、Ca2+、NH4+对红壤中重金属的影响[J].中国环境科学, 2002, 22(1):6-10. [34] 钟宁, 李顺兴, 曾清如, 等.过碳酰胺对土壤pH和5种交换态金属离子含量的影响[J].水土保持学报, 2012, 26(6):122-126. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201206025.htm