Effects of Biogas Slurry on Yield of Pennisetum and Inorganic Nitrogen and Enzymatic Activities in Soil
-
摘要: 通过沼液浇灌人工草地定位试验,以‘闽牧6号’狼尾草P.americanum×P.purpureum CV.Minmu 6为供试植物,研究不同沼液浇灌量(N1~N5)对狼尾草株高、产量以及土壤铵态氮、硝态氮、脲酶、蛋白酶、谷氨酰胺酶和天冬酰胺酶活性的影响。结果表明:与对照(N1)相比,施沼液可显著提高狼尾草株高,但N2~N5之间没有显著差异(P>0.05)。施沼液还能显著提高狼尾草产量(P < 0.05),全年最高可增产119.0%,增产量为174754 kg·hm-2。施沼液对0~20 cm和20~40 cm土层土壤铵态氮含量影响不显著(P>0.05)。0~20 cm和20~40 cm土层土壤硝态氮含量随沼液浇灌量的增加呈上升趋势,且0~20 cm土层,N4和N5处理较N1处理土壤硝态氮含量显著增加(P < 0.05)。T1时期,施沼液对脲酶、蛋白酶、谷氨酰胺酶和天冬酰胺酶活性无显著影响(P>0.05)。相关性分析表明,施沼量与株高在各个时期都达到显著性相关(P < 0.05),与0~20 cm土层土壤硝态氮含量及产量达到极显著相关(P < 0.01),T1时期,与4种酶活性没有显著相关性(P>0.05)。Abstract: To explore the potential of utilizing slurry from biogas-producing fermentation beds for fertilization, 'Fujian 6' grass (Pennisetum americanum P. purpureum CV. Minmu 6) was used in a turf experiment. Varied quantities of slurry application (i.e., N1 as control, and N2 through N5 as treatments) on the grass were executed. The plant height and yield of the grass, as well as the ammonium nitrogen, nitrate nitrogen and the activities of urease, protease, glutaminase and asparaginase in the soil, were determined. The results showed that the applications improved the plant height over N1, but no significant differences among the treatments (P>0.05). The grass yield was also significantly increased (P < 0.05) reaching 174 754 kg·hm-2, a level 119.0% higher than that of N1. In the 0-20 cm or 20-40 cm soil layers, there was no significant change on the ammonium nitrogen content (P>0.05), but the nitrate nitrogen increased with increasing slurry application. Compared to N1, N4 and N5 significantly increased the nitrate nitrogen content in the 0-20 cm soil (P < 0.05). The effects of biogas slurry on the activities of urease, protease, glutaminase and Asparaginase were not significant during T1(May, 7, 2015) period (P>0.05). A correlation analysis on the data re-confirmed a significant correlation between the biogas slurry applications and the plant height of the grass (P < 0.05), and an extremely significant correlation between the applications and the nitrate nitrogen in 0-20 cm layer of soil and the yield of the grass (P < 0.01) at all time periods, but none on the enzymatic activities during T1 period.
-
Key words:
- biogas slurry /
- Pennisetum /
- ammonium nitrogen /
- nitrate nitrogen /
- enzymatic activity
-
表 1 土壤基本理化性质
Table 1. Basic physical and chemical properties of soil at test site
项目 含量 pH 4.72 全氮/(g·kg-1) 0.79 全磷/(g·kg-1) 0.38 全钾/(g·kg-1) 56.38 有机质/(g·kg-1) 15.28 碱解氮/(mg·kg-1) 73.91 速效磷/(mg·kg-1) 41.51 表 2 不同沼液浇灌下狼尾草植株株高和产量的变化
Table 2. Changes on height and yield of Pennisetum with biogas slurry applications
处理 株高/m 小区产量/kg T1 T2 T3 T1 T2 T3 N1 1.52±0.18a 1.75±0.05a 2.18±0.19a 24.82±8.04a 31.63±7.21a 31.61±2.96a N2 1.86±0.08b 2.13±0.01b 2.32±0.03ab 42.07±3.92ab 53.56±3.07b 53.12±4.18b N3 1.83±0.02b 2.26±0.15b 2.56±0.14b 43.23±7.65ab 60.32±1.35bc 53.7±3.58bc N4 1.85±0.02b 2.19±0.02b 2.44±0.04b 45.61±8.60ab 63.95±3.71bd 52.18±6.94b N5 1.97±0.04b 2.17±0.14b 2.42±0.03b 57.18±9.41b 68.64±0.43cd 67.03±1.78c 注:同列数据后不同小写字母表示各数值之间差异显著(P < 0.05)。下表同。 表 3 T1时期各指标之间相关性
Table 3. Correlation among all indices in T1
相关性 施沼量 株高 产量 硝态氮 铵态氮 脲酶 蛋白酶 谷氨酰胺酶 天冬酰胺酶 施沼量 1 0.631* 0.639* 0.687** 0.285 0.383 -0.096 -0.460 -0.161 株高 1 0.752** 0.631* -0.012 0.606* 0.284 -0.068 0.414 产量 1 0.794** 0.156 0.441 134 0.034 0.217 硝态氮 1 0.184 0.154 -0.048 -0.027 0.087 铵态氮 0 1 -0.119 0.039 -0.396 -0.327 脲酶 0 1 0.134 0.132 0.419 蛋白酶 1 0.373 0.419 谷氨酰胺酶 1 0.657** 天冬酰胺酶 1 注:*在0.05水平(双侧) 上显著相关;**在0.01水平(双侧) 上显著相关,下表同。 表 4 T2和T3时期各指标之间相关性
Table 4. Correlation among all indices in T2 and T3
相关性 T2 T3 施沼量 株高 产量 硝态氮 铵态氮 施沼量 株高 产量 硝态氮 铵态氮 施沼量 1 0.611* 0.846** 0.827** -0.451 1 0.531* 0.769** 0.783** 0.874** 株高 1 0.701** 0.304 -0.351 1 0.457 0.281 0.315 产量 1 0.655** -0.509 1 0.738** 0.572* 硝态氮 1 -0.298 1 0.752** 铵态氮 1 1 -
[1] ABDELSALAM E, SAMER M, ATTIA Y A, et al. Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry[J]. Renewable Energy, 2016, 87(1):592-598. [2] WENTZEL S, SCHMIDT R, PIEPHO H P, et al. Response of soil fertility indices to long-term application of biogas and raw slurry under organic farming[J]. Applied Soil Ecology, 2015, 96(12):99-107. [3] 吴华山, 郭德杰, 马艳, 等.猪粪沼液施用对土壤氨挥发及玉米产量和品质的影响[J].中国生态农业学报, 2012, (2):163-168. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201202007.htm [4] SINGLA A, IWASA H, INUBUSHI K. Effect of biogas digested slurry based-biochar and digested liquid on N2O, CO2 flux and crop yield for three continuous cropping cycles of komatsuna (Brassica rapa var. perviridis)[J]. Biology and Fertility of Soils, 2014, 50(8):1201-1209. doi: 10.1007/s00374-014-0950-7 [5] 黄秀声, 黄勤楼, 翁伯琦, 等.沼液不同氮素水平对狼尾草产量、质量、氮素利用率和土壤剖面硝态氮分布的影响[J].农业环境科学学报, 2014, (8):1652-1658. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408027.htm [6] 黄勤楼, 陈恩, 黄秀声, 等.施氮水平对杂交狼尾草产量、品质和氮素吸收利用的影响[J].热带作物学报, 2009, (1):26-30. http://www.cnki.com.cn/Article/CJFDTOTAL-RDZX200901008.htm [7] 钟小仙, 顾洪如, 江海东, 等.肥料运筹对杂交狼尾草氮素利用效率和硝酸盐含量的影响[J].江苏农业学报, 2006, (4):429-433. http://www.cnki.com.cn/Article/CJFDTOTAL-JSNB200604024.htm [8] 关松荫.土壤酶及其研究方法[M].北京:农业出版社, 1986:273-340. [9] 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社, 1999:159-161. [10] SÄNGER A, GEISSELER D, LUDWIG B. Effects of moisture and temperature on greenhouse gas emissions and C and N leaching losses in soil treated with biogas slurry[J].Biology and Fertility of Soils, 2011, 47:249-259. doi: 10.1007/s00374-010-0528-y [11] 冯伟, 管涛, 王晓宇, 等.沼液与化肥配施对冬小麦根际土壤微生物数量和酶活性的影响[J].应用生态学报, 2011, (4):1007-1012. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201104026.htm [12] 汪吉东, 曹云, 常志州, 等.沼液配施化肥对太湖地区水蜜桃品质及土壤氮素累积的影响[J].植物营养与肥料学报, 2013, (2):379-386. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201302015.htm [13] 唐华, 郭彦军, 李智燕.沼液灌溉对黑麦草生长及土壤性质的影响[J].草地学报, 2011, (6):939-942. http://www.cnki.com.cn/Article/CJFDTOTAL-CDXU201106011.htm [14] MÖLLER K, STINNER W, DEUKER A, et al. Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems[J]. Nutrient Cycling in Agroecosystems, 2008, 82:209-232. doi: 10.1007/s10705-008-9196-9 [15] 赵麒淋.旱旱轮作模式下沼液连续施用对土壤质量和玉米产量及品质的影响研究[D].成都:四川农业大学, 2012. [16] 王忠江, 蔡康妮, 王丽丽, 等.施灌沼肥对土壤氨挥发和氮素下渗规律的影响[J].农业机械学报, 2014, (5):139-144. http://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201405022.htm [17] 彭永红.沼液施加对土壤氮分布及温室气体排放的影响[D].临安:浙江农林大学, 2012. [18] MÖLLER K. Influence of different manuring systems with and without biogas digestion on soil organic matter and nitrogen inputs, flows and budgets in organic cropping systems[J]. Nutrient Cycling in Agroecosystems, 2009, 84:179-202. doi: 10.1007/s10705-008-9236-5 [19] GERICKE D, BORNEMANN L, KAGE H, et al. Modelling Ammonia Losses After Field Application of Biogas Slurry in Energy Crop Rotations[J]. Water Air Soil Pollution, 2012, 223:29-47. doi: 10.1007/s11270-011-0835-4 [20] 赵莉.施用沼液对水芹产量、品质及土壤氨挥发的影响[D].南京:南京农业大学, 2013. [21] 靳红梅, 常志州, 郭德杰, 等.追施猪粪沼液对菜地氨挥发的影响[J].土壤学报, 2012, (1):86-95. http://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201201011.htm [22] 张笑千.沼液农田施用氮素迁移转化规律研究[D].北京:中国农业大学, 2015. [23] PU S H, HUANG P, LIU W, et al. Study on the Effects of Biogas Slurry Application on Soil Phosphate and Catalase Activity[J]. Advanced Materials Research, 2014, 955-959:3625-3629. doi: 10.4028/www.scientific.net/AMR.955-959 [24] 冯丹妮, 伍钧, 杨刚, 等.连续定位施用沼液对水旱轮作耕层土壤微生物区系及酶活性的影响[J].农业环境科学学报, 2014, (8):1644-1651. http://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201408026.htm [25] 樊文华, 刘晋峰, 王志伟, 等.施用沼液对温室土壤微生物和酶活性的影响[C]//中国土壤学会.面向未来的土壤科学(中册)--中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集.中国土壤学会, 2012:7.