Biomasses and Transcript Levels of Aundo donax L. Species
-
摘要: 芦竹Arundo donax L.由于其生长快速、抗逆性强、蛋白含量高等优点,正以重要能源植物的定位受到越来越多的重视。本研究针对本单位收集的源自我国山东省烟台市及福建省福州市永泰县的2种芦竹进行叶片形态、生物量及营养物质含量等生物学特性分析,发现2个芦竹品种在干物质产量、水分含量、纤维含量、粗灰分含量等指标上存在一定差异性。基于上述差异性,对2个芦竹品种的叶片进行Illumina高通量测序分析,构建芦竹转录组数据库。通过de novo的方法对获得的转录组数据进行组装,并预测各组装获得Unigene的开放阅读框,从而获得可能的蛋白氨基酸序列。通过基因表达量差异性分析,筛选2个芦竹品种中表达量差异显著的基因,并将上述基因与Gene Ontology(GO)、Eukaryotic Orthologous Groups of proteins(KOG)及Kyoto Encyclopedia of Genes and Genomes(KEGG)等数据库比对分析,预测差异表达基因的功能及参与的代谢信号通道。针对与生物量及生物乙醇产量相关的代谢途径的分析发现,2个芦竹品种在碳固定光合作用、淀粉/糖代谢及木质素合成相关的信号通道中关键酶基因的表达量上具有显著差异。上述结论从生物学及生物信息学角度分别分析了源自我国不同地域的芦竹品种在生物产量及生物质能源相关指标上的差异性。研究结论为筛选芦竹品种作为优质生物质能源草种提供了依据。Abstract: Arundo donax is a promising crop for bioenergy as it is fast growing, stress-tolerant and high in protein content. The morphological characteristics and biomass yields of A. donax species originated from Yantai, Shandong and Fuzhou, Fujian were compared. Transcriptome analysis in the leaf RNA of both species were conducted by Illumina sequencing. Their expression levels were calculated, and differently expressed genes screened and annotated with databases from sources including Gene Ontology (GO), euKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Further analyses on the signal pathways, such as carbon fixation in photosynthetic organisms, starch and sucrose metabolism and phenylpropanoid biosynthesis, showed significant differences on the expressions of some key enzymes in them. The results provided a useful clue in selecting and breeding A. donax for bioenergy.
-
Key words:
- Arundo donax /
- bioenergy /
- biomass /
- leaf /
- transcriptome /
- expression level
-
图 6 芦竹品种转录组中与生物量及生物乙醇相关信号通道基因差异表达情况
注:红色边框表示山东芦竹叶片转录组中表达量显著高于福建芦竹的酶;绿色边框表示山东芦竹叶片转录组中表达量显著低于福建芦竹的酶;蓝色边框表示与该酶相关的基因在山东芦竹与福建芦竹中表达量互有高低;蓝色背景表示在芦竹转录组中发现的参与该信号通道的酶;方框中的编号为KEGG数据库中的酶编号,可在KEGG数据库中检索(http://www.kegg.jp/kegg/annotation/enzyme.html)。
Figure 6. Three biomass and bio-ethanol related signaling pathways in A. donax
表 1 山东芦竹与福建芦竹整株的化学成分
Table 1. Chemical compositions of A. donaxs plant originated from Shandong and Fujian
品种 生长天数
/d水分
/%粗灰分
/%粗脂肪
/%粗纤维
/%粗蛋白
/%无氮浸出物
/%中性洗涤纤维
/%酸性洗涤纤维
/%山东芦竹 100 6.93 6.17 4.14 33.68 8.45 40.62 67.81 42.84 130 6.64 6.89 3.16 38.42 6.82 38.07 70.33 45.34 160 7.05 5.02 4.26 41.62 5.49 36.57 72.15 49.29 190 5.33 4.54 2.77 42.70 5.36 39.30 73.03 50.65 220 7.10 5.25 3.28 45.65 3.84 34.88 69.98 47.36 福建芦竹 100 7.06 5.97 3.95 35.50 9.03 38.49 66.87 41.90 130 7.64 7.06 4.28 34.80 9.06 37.15 67.14 43.43 160 6.57 5.25 4.81 38.14 7.36 37.87 69.84 46.25 190 5.39 4.87 3.43 42.49 6.38 37.44 73.19 51.15 220 7.01 4.61 3.16 44.23 5.85 35.15 72.58 50.61 -
[1] FU Y, POLI M, SABLOK G, WANG B, LIANG Y, et al. Dissection of early transcriptional responses to water stress in Arundo donax L. by unigene-based RNA-seq[J].Biotechnology for Biofuels, 2016, 9:1. doi: 10.1186/s13068-015-0423-8 [2] DOEBLEY J F, GAUT B S, SMITH B D.The molecular genetics of crop domestication[J]. Cell, 2006, 127:1309-1321. doi: 10.1016/j.cell.2006.12.006 [3] 曾汉元, 魏麟, 刘鹏, 等.能源草芦竹遗传多样性的ISSR分析[J].草业学报, 2013, (22):266-273. http://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201303036.htm [4] 中国植物志编委会.中国植物志:第九卷第二分册[M].北京:科学出版社, 2002:20-21. [5] SABLOK G, FU Y, BOBBIO V, et al.Fuelling genetic and metabolic exploration of C3 bioenergy crops through the first reference transcriptome of Arundo donax L[J]. Plant biotechnology Journal, 2014, 12:554-567. doi: 10.1111/pbi.12159 [6] 吴武汉.芦竹--一种高产优质的造纸原料[J].天津造纸, 1993, (15):28-29. http://www.cnki.com.cn/Article/CJFDTOTAL-TJZZ199304006.htm [7] 林兴生, 林占熺, 林辉, 等.五种菌草苗期对碱胁迫的生理响应及抗碱性评价[J].植物生理学报, 2013, (49):167-174. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL201302010.htm [8] 朱志国, 周守标.铜锌复合胁迫对芦竹生理生化特性, 重金属富集和土壤酶活性的影响[J].水土保持学报, 2014, (28):276-280. http://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201401053.htm [9] 韩志萍, 胡正海.芦竹对不同重金属耐性的研究[J].应用生态学报, 2005, (16):161-165. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200501034.htm [10] 曾汉元, 杨洋, 姚元枝, 等.不同居群芦竹纤维素和木质素含量的比较研究[J].中国农学通报, 2012, (28):225-228. http://www.cnki.com.cn/Article/CJFDTOTAL-ZNTB201219045.htm [11] 余醉, 李建龙, 李高扬.芦竹作为清洁生物质能源牧草开发的潜力分析[J].草业科学, 2009(26):62-69. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKX200906015.htm [12] YEATES D K, MEUSEMANN K, TRAUTWEIN M, et al.Power, resolution and bias:recent advances in insect phylogeny driven by the genomic revolution[J]. Current Opinion in Insect Science, 2016, 13:16-23. doi: 10.1016/j.cois.2015.10.007 [13] MORTAZAVI A, WILLIAMS B A, MCCUE K, et al.Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nature methods, 2008, 5:621-628. doi: 10.1038/nmeth.1226 [14] GRABHERR M G, HAAS B J, YASSOUR M, et al.Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29:644-652. doi: 10.1038/nbt.1883 [15] GRABHERR M G, HAAS B J, YASSOUR M, et al.Trinity:reconstructing a full-length transcriptome without a genome from RNA-Seq data[J]. Nature Biotechnology, 2011, 29:644. doi: 10.1038/nbt.1883 [16] ASHBURNER M, BALL C A, BLAKE J A, et al.Gene Ontology:tool for the unification of biology[J]. Nature genetics, 2000, 25:25-29. doi: 10.1038/75556 [17] TATUSOV R L, FEDOROVA N D, JACKSON J D, et al.The COG database:an updated version includes eukaryotes[J]. BMC Bioinformatics, 2003, 4:1. doi: 10.1186/1471-2105-4-1 [18] KANEHISA M, GOTO S.KEGG:kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28:27-30. doi: 10.1093/nar/28.1.27 [19] TRAPNELL C, WILLIAMS B A, PERTEA G, et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nature Biotechnology, 2010, 28:511-515. doi: 10.1038/nbt.1621 [20] LENG N, DAWSON J A, THOMSON J A, et al.EBSeq:an empirical Bayes hierarchical model for inference in RNA-seq experiments[J]. Bioinformatics, 2013, 29:1035-1043. doi: 10.1093/bioinformatics/btt087 [21] BOUVIER D'YVOIRE M, BOUCHABKE-COUSSA O, VOOREND W, et al.Disrupting the cinnamyl alcohol dehydrogenase 1 gene (BdCAD1) leads to altered lignification and improved saccharification in Brachypodium distachyon[J]. The Plant Journal, 2013, 73:496-508. doi: 10.1111/tpj.12053 [22] CHEN F, DIXON R A.Lignin modification improves fermentable sugar yields for biofuel production[J]. Nature Biotechnology, 2007, 25:759-761. doi: 10.1038/nbt1316 [23] JUNG H-J G, SAMAC D A, SARATH G.Modifying crops to increase cell wall digestibility[J]. Plant Science, 2012, 185:65-77. https://www.researchgate.net/publication/221824307_Modifying_crops_to_increase_cell_wall_digestibility