Research Progress of Protein-protein Interaction Technology A Research Review of the Technology of Protein-protein Interaction
-
摘要: 大多数表型功能的形成与蛋白质和基因产生的相互作用有关。蛋白质相互作用(PPI,protein-protein interaction)是研究蛋白质功能的重要手段,近年来发展较快。该技术在预测目的蛋白功能和基因功能上发挥了重要作用。蛋白质相互作用的研究方法主要分为3类:体内试验、体外试验、模拟生物学试验。本文比较了这些试验方法各自的特点及局限性,综述了蛋白质相互作用试验技术的研究进展及其在生物学研究中的应用,并对该技术研究进行了展望。Abstract: Most phenotypic functions come from the interaction between genes and proteins. Protein-protein interaction (PPI) is an important technology that has developed rapidly in recent years, to study protein function and this technology plays a key role in predicting the function of target proteins and genes. The main research methods of PPI are divided into three categories:in vivo, in vitro and in silico. This review compares the characteristics and limitations of these methods, summarizes the progress and application of protein-protein interaction technology in biology research, and prospects this technology.
-
Key words:
- protein-protein interaction /
- in vivo methods /
- in vitro methods /
- in silico methods
-
表 1 蛋白质相互作用的数据库及功能介绍
Table 1. The database and function of protein interaction
序号 数据库名字 功能 参考网址 1 Struct2Net The Struct2Net server makes structure-based computational predictions of protein-protein interactions (PPIs) http://groups.csail.mit.edu/cb/struct2net/webserver/ 2 Coev2Net Coev2Net is a general framework to predict, assess, and boost confidence in individual interactions inferred from a high-throughput experiment http://groups.csail.mit.edu/cb/coev2net/ 3 Prism Protocol Prism Protocol is a collection of programs that can be used to predict protein-protein interactions using protein interfaces http://groups.csail.mit.edu/cb/coev2net/ 4 InterPreTS InterPreTS uses tertiary structure to predict interactions http://www.russell.embl.de/interprets 5 PrePPI PrePPI predicts protein interactions using both structural and nonstructural information http://www.russell.embl.de/interprets 6 Iwarp Iwarp is a threading-based method to predict protein interaction from protein sequences http://groups.csail.mit.edu/cb/iwrap/ 7 PoiNet PoiNet provides PPI filtering and network topology from different databases http://poinet.bioinformatics.tw/ 注:[55-64] -
[1] 蒋英芝, 贺连华, 刘建军.蛋白质功能研究方法及技术[J].生物技术通报, 2009, (9):38-43. http://www.cnki.com.cn/Article/CJFDTOTAL-SWJT200909007.htm [2] 孙宇, 贾凌云, 任军.蛋白质相互作用的研究方法[J].分析化学, 2007, 35(5):760-766. http://www.cnki.com.cn/Article/CJFDTOTAL-YJZY201104102.htm [3] UHRIG J F. Protein interaction networks in plants[J]. Planta, 2006, 224(4):771-781. doi: 10.1007/s00425-006-0260-x [4] BRAUN P, GINGRAS A C. History of protein-protein interactions:from egg-white to complex networks[J]. Proteomics, 2012, 12(10):1478-1498. doi: 10.1002/pmic.201100563 [5] 涂占晗, 林旭.蛋白质相互作用研究的常用方法进展及比较[J].中国当代医药, 2012, 19(14):18-20. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGUD201214012.htm [6] JANIN J, BONVIN A M. Protein-Protein Interactions[J]. Current opinion in structural biology, 2013, 23(6):859. doi: 10.1016/j.sbi.2013.10.003 [7] OFRAN Y, ROST B. Predicted protein-protein interaction sites from local sequence information[J]. FEBS Lett, 2003, 544(1-3):236-239. doi: 10.1016/S0014-5793(03)00456-3 [8] 陈玉, 刘鹏, 陈由强, 等.基因芯片技术在水稻抗逆基因表达研究中的应用[J].福建农业学报, 2012, 27(12):1395-1400. http://www.cnki.com.cn/Article/CJFDTOTAL-FJNX201212025.htm [9] VAN DIECK J, SCHMID V, HEINDL D, et al. Development of Bispecific Molecules for the In Situ Detection of Protein-Protein Interactions and Protein Phosphorylation[J]. Chemistry & biology, 2014, 21(3):357-368. https://www.ncbi.nlm.nih.gov/pubmed/24529991 [10] JANIN J, BONVIN A M. Protein-Protein Interactions[J]. Current opinion in structural biology, 2013, 23(6):859. doi: 10.1016/j.sbi.2013.10.003 [11] CHARLOTEAUX B, ZHONG Q, DREZE M, et al. Protein-protein interactions and networks:forward and reverse edgetics[M]. Yeast Systems Biology, Springer, 2011:197-213. [12] TUNCBAG N, GURSOY A, NUSSINOV R, et al. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM[J]. Nature protocols, 2011, 6(9):1341-1354. doi: 10.1038/nprot.2011.367 [13] 王煜涵.稻瘟菌MAP蛋白酶互作蛋白的鉴定与分析[D].长春:吉林大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10183-1013196214.htm [14] MAEDA K, POLETTO M, CHIAPPARINO A, et al. A generic protocol for the purification and characterization of water-soluble complexes of affinity-tagged proteins and lipids[J]. Nat Protoc, 2014, 9(9):2256-2266. doi: 10.1038/nprot.2014.148 [15] 江月, 丛浩龙, 王健, 等.串联亲和纯化技术筛选肠病毒71型3D聚合酶的相互作用蛋白[J].第三军医大学学报, 2012, 34(6):526-529. http://www.cnki.com.cn/Article/CJFDTOTAL-DSDX201206019.htm [16] MORTENSEN L S, SCHMIDT H, FARSI Z, et al. KV 10.1 opposes activity-dependent increase in Ca2+ influx into the presynaptic terminal of the parallel fibre-Purkinje cell synapse[J]. J Physiol, 2015, 593(1):181-196. https://www.researchgate.net/profile/Hartmut_Schmidt/publication/267103722_KV10.1_opposes_activity-dependent_increase_in_Ca2_influx_into_the_presynaptic_terminal_of_the_parallel_fibre__Purkinje_cell_synapse/links/5655a46308ae1ef929772eb9.pdf?origin=publication_list [17] 王淼, 薛巧如, 姚敏菲, 等.高效亲和色谱法测定静注人免疫球蛋白IgG[J].今日药学, 2010, (4):31-33. http://www.cnki.com.cn/Article/CJFDTOTAL-YAXU201004017.htm [18] 何媛.功能蛋白与药物相互作用的亲和色谱法研究[D].西安:西北大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10697-1012442255.htm [19] 郭纯.免疫共沉淀技术的研究进展[J].中医药导报, 2007, (12):86-89. http://www.cnki.com.cn/Article/CJFDTOTAL-NMYZ200804027.htm [20] 柴政斌, 张更林, 韩金祥. GST-pull down技术在蛋白质相互作用中的应用[J].中国生物制品学杂志, 2014, (10):1354-1358. http://www.cnki.com.cn/Article/CJFDTOTAL-SWZP201410034.htm [21] 郭纯.免疫共沉淀技术的研究进展[J].中医药导报, 2007, (12):86-89. http://www.cnki.com.cn/Article/CJFDTOTAL-NMYZ200804027.htm [22] 鹿连明, 秦梅玲, 王萍, 等.利用免疫共沉淀技术研究RSV CP、SP和NSvc4蛋白的互作[J].农业生物技术学报, 2008, 16(5):891-897. http://www.cnki.com.cn/Article/CJFDTOTAL-NYSB200805029.htm [23] 刘东擘, 李生茂, 梁华平, 等. GST Pull-down试验鉴定NF-κB相互作用多肽[J].免疫学杂志, 2006, 22(1):94-97. http://www.cnki.com.cn/Article/CJFDTOTAL-MYXZ200601026.htm [24] 高燕, 杨松光, 崔玉海, 等.拟南芥染色质重塑因子AtBRM和AtSWI3C基因的克隆及生物信息学分析[J].广东农业科学, 2012, (14):131-135. http://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201214042.htm [25] 孙平, 张逢春, 张影.蛋白质芯片技术的研究及应用现状[J].北华大学学报:自然科学版, 2009, (2):115-120. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJYB200501019.htm [26] WUCHTY S, UETZ P. Protein-protein Interaction Networks of E.coli and S.cerevisiae are similar[J]. Scientific Reports, 2014, (4):7187. https://www.ncbi.nlm.nih.gov/pubmed/25431098 [27] FOFFI G, PASTORE A, PIAZZA F, et al. Macromolecular crowding:chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012)[J]. Physical Biology, 2013, 10(4):40301. doi: 10.1088/1478-3975/10/4/040301 [28] 潘虹, 雷珍珍, 许可静, 等.绿色荧光蛋白在微生物与植物互作研究中的应用研究进展[J].广东农业科学, 2012, (3):150-153. http://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201203056.htm [29] 张洁, 柳长柏.蛋白片段互补分析方法及其应用[J].生物技术通报, 2013, (2):67-71. http://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201302010.htm [30] LEVY E D, MICHNICK S W, LANDRY C R. Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2012, 367(1602):2594-2606. doi: 10.1098/rstb.2012.0078 [31] 董金华, 唐玉海, 乔宁, 等.噬菌体展示抗克伦特罗抗体文库的构建及单克隆抗体的筛选[J].生物技术通报, 2014, (2):136-142. http://www.cnki.com.cn/Article/CJFDTOTAL-SWJT201402023.htm [32] 张莉.光散射技术在蛋白质分析与纳米微粒表征中的应用[D].重庆:西南大学, 2007. [33] 李永宏, 廉芬, 王文鹏, 等.一种可用于轻气炮加载试验中的光散射测试技术[J].光散射学报, 2015, (1):121-124. http://www.cnki.com.cn/Article/CJFDTOTAL-GSSX201501009.htm [34] 黄芳, 黄晓兰, 林晓珊, 等.高效液相色谱-核磁共振光谱法测定纺织品及纺织助剂中烷基酚聚氧乙烯醚[J].理化检验:化学分册, 2007, (1):5-7. http://www.cnki.com.cn/Article/CJFDTOTAL-LHJH200701001.htm [35] 王新, 薛玉.核磁共振光谱分析技术及其在浆纸研究中的应用简述[J].中小企业管理与科技:下旬刊, 2012, (10):141-142. http://www.cnki.com.cn/Article/CJFDTOTAL-ZXQX201210095.htm [36] 金晨婷, 武光亮.核磁共振技术在蛋白质-配体相互作用研究中的应用[J].宁波化工, 2011, (1):9-14. http://www.cnki.com.cn/Article/CJFDTOTAL-NBHG201101008.htm [37] HU Y, JIANG L, WANG F, et al. Jasmonate Regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 Cascade and Freezing Tolerance in Arabidopsis[J]. The Plant Cell, 2013, 25(8):2907-2924. doi: 10.1105/tpc.113.112631 [38] 秦宝明, 罗述金, 米志勇, 等.酵母双杂合系统的改进和发展[J].生物工程进展, 1998, (4):2-9. http://www.cnki.com.cn/Article/CJFDTOTAL-SWGJ804.000.htm [39] 刘长仁, 刘伟, 翟金玲, 等.拟南芥AtGRP7基因诱饵载体的构建及酵母双杂的初筛[J].热带生物学报, 2012, (2):121-125. http://www.cnki.com.cn/Article/CJFDTOTAL-HNNX201202008.htm [40] 訾亮, 洪灏, 翟金玲, 等.拟南芥NiNJA基因酵母双杂诱饵载体构建及互作蛋白的筛选[J].热带生物学报, 2013, 4(1):31-35. http://www.cnki.com.cn/Article/CJFDTOTAL-HNNX201301008.htm [41] 龙皎月.番茄乙烯信号转导组分EIN3互作蛋白LeEBFs的基因克隆和功能研究[D].重庆:重庆大学, 2008. [42] GUY E, LAUTIER M, CHABANNES M, et al. xopAC-triggered Immunity against Xanthomonas Depends on Arabidopsis Receptor-Like Cytoplasmic Kinase Genes PBL2 and RIPK[J]. PLOS ONE, 2013, 8:e734698. https://www.ncbi.nlm.nih.gov/pubmed/23951354 [43] LIU J, ZHANG J, JIA C, et al. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit[J]. Plant Cell Reports. 2013, 32(1):129-137. doi: 10.1007/s00299-012-1347-4 [44] 李渝萍, 陈敏, 陈彬, 等.利用酵母双杂合系统筛选与hERRα1相互作用的蛋白质[J].第三军医大学学报, 2003, (15):1352-1354. http://www.cnki.com.cn/Article/CJFDTOTAL-DSDX200315017.htm [45] PEDAMALLU C S, POSFAI J. Open source tool for prediction of genome wide protein-protein interaction network based on ortholog information[J]. Source Code Biol Med, 2010, 5(1):8. doi: 10.1186/1751-0473-5-8 [46] SHOKEIR T. Impact of luteal phase hysteroscopy and concurrent endometrial biopsy on subsequent IVF cycle outcome[J]. Archives of Gynecology and Obstetrics. 2014, 290(2):369-374. doi: 10.1007/s00404-014-3211-y [47] TROISI R, GANMAA D, DOS SANTOS SILVA I, et al. The Role of Hormones in the Differences in the Incidence of Breast Cancer between Mongolia and the United Kingdom[J]. PLoS ONE, 2014, 9(12):e114455. doi: 10.1371/journal.pone.0114455 [48] 艾观华, 周建红, 方慧生.基于蛋白质序列预测蛋白质-蛋白质相互作用位点研究进展[J].药物生物技术, 2011, (2):165-169. http://www.cnki.com.cn/Article/CJFDTOTAL-YWSW201102018.htm [49] SKRABANEK L, SAINI H K, BADER G D, et al. Computational prediction of protein-protein interactions[J]. Molecular biotechnology, 2008, 38(1):1-17. doi: 10.1007/s12033-007-0069-2 [50] KANNO E, ISHIBASHI K, KOBAYASHI H, et al. Comprehensive screening for novel rab-binding proteins by GST pull-down assay using 60 different mammalian Rabs[J]. Traffic, 2010, 11(4):491-507. doi: 10.1111/tra.2010.11.issue-4 [51] KOLLMANN C S, BAI X, TSAI C, et al. Application of Encoded Library Technology (ELT) to a Protein-Protein Interaction target:Discovery of a Potent Class of Integrin Lymphocyte Function-associated Antigen 1(LFA-1) Antagonists[J]. Bioorganic & Medicinal Chemistry, 2014, 22(7):2353-2365. https://www.researchgate.net/publication/260114245_Application_of_Encoded_Library_Technology_ELT_to_a_Protein-Protein_Interaction_target_Discovery_of_a_Potent_Class_of_Integrin_Lymphocyte_Function-associated_Antigen_1_LFA-1_Antagonists [52] ZHANG X, WALKER R C, PHIZICKY E M, et al. Influence of Sequence and Covalent Modifications on Yeast tRNA Dynamics[J]. Journal of Chemical Theory and Computation, 2014, 10(8):3473-3483. doi: 10.1021/ct500107y [53] GRANT T D, LUFT J R, WOLFLEY J R, et al. The Structure of Yeast Glutaminyl-tRNA Synthetase and Modeling of Its Interaction with tRNA[J]. Journal of Molecular Biology, 2013, 425(14):2480-2493. doi: 10.1016/j.jmb.2013.03.043 [54] LIU P.Exploring the Molecular Mechanism and Biomakers of Liver Cancer Based on Gene Expression Microarray[J]. Pathol Oncol Res, 2015, 21(4):1077-1083. doi: 10.1007/s12253-015-9926-7 [55] HOSUR R. A computational framework for boosting confidence in high-throughput protein-protein interaction datasets[J]. Genome Biol, 2012, 13(8):R76. doi: 10.1186/gb-2012-13-8-r76 [56] SINGH R.Struct2Net:a web service to predict protein-protein interactions using a structure-based approach[J]. Nucleic Acids Res, 2010, 38(Web Server issue):W508-515. https://www.ncbi.nlm.nih.gov/pubmed/20513650 [57] SINGH R, XU J, BERGER B.Struct2net:integrating structure into protein-protein interaction prediction[J]. Pac Symp Biocomput, 2006:403-414. doi: 10.1142/9789812701626_0037 [58] PEARSE R M.Prevention of Respiratory Insufficiency after Surgical Management (PRISM) trial:report of the protocol for a pragmatic randomised controlled trial of Continuous Positive Airway Pressure (CPAP) to prevent respiratory complications and improve survival following major abdominal surgery[J].Minerva Anestesiol, 2016, 82(10):1023-1025. http://prismtrial.org/docs/PRISM%20protocol%20v1.4%2018aug15%20final.pdf [59] CZAJA S J.The personalized reminder information and social management system (PRISM) trial:rationale, methods and baseline characteristics[J]. Contemp Clin Trials, 2015, 40:35-46. doi: 10.1016/j.cct.2014.11.004 [60] TUNCBAG N.Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM[J]. Nat Protoc, 2011, 6(9):1341-1354. doi: 10.1038/nprot.2011.367 [61] GONZALEZ A J, LIAO l. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines[J]. BMC Bioinformatics, 2010, 11:537. doi: 10.1186/1471-2105-11-537 [62] ZHANG Q C. PrePPI:a structure-informed database of protein-protein interactions[J]. Nucleic Acids Res, 2013, 41(Database issue):828-833. https://academic.oup.com/nar/article/41/D1/D828/1070064/PrePPI-a-structure-informed-database-of-protein [63] ZHANG Q C.Structure-based prediction of protein-protein interactions on a genome-wide scale[J]. Nature, 2012, 490(7421):556-560. doi: 10.1038/nature11503 [64] LEE S A. POINeT:protein interactome with sub-network analysis and hub prioritization[J]. BMC Bioinformatics, 2009, 10:114. doi: 10.1186/1471-2105-10-114