The Effect of Different Nitrogen Rates on Culm Traits and Lodging Resistance of Hybrid Rice
-
摘要: 以超高产两系杂交稻品种广两优676为材料,研究不同施氮量处理对水稻茎秆性状及抗倒伏性的影响。结果表明,随着施氮量的增加,水稻各节间特别是基部的倒4节和倒5节间的长度增长,与施氮量间呈极显著的正相关,施氮可以增加水稻节间长度;各节间粗随着施氮水平的提高而增粗;施氮对茎秆壁厚无影响;各节间至穗顶高及至穗顶重与施氮量间呈极显著相关;各节间抗折力随施氮量增加而降低,但均没有显著差异;弯曲力矩和倒伏指数则随施氮量的增加而显著提高,相关达极显著水平。在施氮量为20 g·m-2范围内,广两优676仍具有较好的抗倒能力,当施用过量氮肥时,则易发生倒伏。Abstract: The effects of different nitrogen rates on culm traits and lodging resistance were studied for a two-line super high-yielding hybrid rice combination Guangliangyou 676. The results indicated that the length of internodes, especially the fourth and fifth internode from the top, increased with the increase of nitrogen application rates, and had an extremely significant positive correlation with nitrogen application rates, showing that nitrogen application could increase internode length of rice. The diameter of each internode increased with the increase of nitrogen application levels. Nitrogen application had no effect on culm wall thickness. The height and weight of each internode to the top of the spike all had a very closely significant correlation with nitrogen application levels. The breaking-resistant strength of each internode decreased with the increase of nitrogen application rates, but had no significant difference. The bending moment and lodging index both significantly increased with the increase of nitrogen fertilizer rates, and both had very closely significant relation to nitrogen application rates. Guangliangyou676 has better resistant lodging ability below 20 g·m-2 of nitrogen application rate, but is subjected to lodging easily under excessive nitrogen fertilizers.
-
Key words:
- hybrid rice /
- nitrogen application rates /
- culm traits /
- lodging resistance /
- effect
-
表 1 不同施氮水平对水稻茎秆性状的影响
Table 1. Effects of different nitrogen levels on stem traits of rice
处理 施氮量/
(g·m-2)倒3节 倒4节 倒5节 节间长
/cm节间粗
/mm茎秆壁厚
/mm节间长
/cm节间粗
/mm茎秆壁厚
/mm节间长
/cm节间粗
/mm茎秆壁厚
/mm1 0 13.99Aa 6.30Cc 0.84Aa 6.60Bc 7.17Bc 1.03Aa 3.19Bb 6.70Cc 1.18Aa 2 10 16.05Aa 6.80BCb 0.83Aa 8.58Ab 7.25Bbc 0.91Ab 5.13Aa 7.11BCbc 1.05Ab 3 20 15.62Aa 7.09Bb 0.81Aa 9.38Aab 7.70ABb 0.96Aab 5.53Aa 7.59ABab 1.12Aab 4 30 16.03Aa 7.11Bb 0.81Aa 10.09Aa 7.74ABb 0.91Ab 5.79Aa 7.84ABa 1.08Aab 5 40 16.29Aa 7.80Aa 0.86Aa 10.18Aa 8.23Aa 1.02Ab 6.15Aa 8.22Aa 1.16Aab 注:同列数据后不同大、小写字母表示差异达极显著(P < 0.01)或显著(P < 0.05)水平。表 2、3同。 表 2 不同施氮水平下各节间至穗顶高度及重量比较
Table 2. Comparison of the height and weight of each internode to the top of the panicle under different nitrogen application levels
处理 施氮量/
(g·m-2)倒3节 倒4节 倒5节 至穗顶高/cm 至穗顶重/g 至穗顶高/cm 至穗顶重/g 至穗顶高/cm 至穗顶重/g 1 0 107.0Bb 23.35Ab 113.6Bb 25.06Cc 116.8Bc 27.72Cd 2 10 110.2ABab 25.23Aab 118.8Aab 27.14BCbc 123.9Ab 29.55BCcd 3 20 110.7ABab 25.59Aab 120.1Aab 28.31ABCb 125.6Aab 32.85ABbc 4 30 113.1ABa 26.62Aab 123.2Aa 29.30ABab 129.0Aab 34.10ABab 5 40 113.7Aa 27.69Aa 123.9Aa 31.37Aa 130.0Aa 37.12Aa 表 3 不同施氮水平对各节间抗折力、弯曲力矩及倒伏指数的影响
Table 3. Effects of different nitrogen levels on breaking-resistant strength, bending moment and lodging index for each internode
处理 施氮量/ (g·m-2) 倒3节 倒4节 倒5节 抗折力/g 弯曲力矩 倒伏指数 抗折力/g 弯曲力矩 倒伏指数 抗折力/g 弯曲力矩 倒伏指数 1 0 1675.6Aa 2515.4Bb 158.6Bb 1889.3Aa 2859.1Cc 157.9Bc 2342.8Aa 3255.8Dd 142.6Dd 2 10 1633.9Aa 2790.5ABab 172.2Bb 1843.7Aa 3227.5BCbc 176.7Bbc 2208.3Aa 3671.4CDcd 167.1CDcd 3 20 1526.7Aa 2839.6ABab 187.0ABb 1808.8Aa 3406.0ABb 189.3Bb 2155.1Aa 4134.6BCbc 195.0BCbc 4 30 1432.0Aa 3002.7ABa 217.6Aa 1625.2Aa 3602.8ABab 231.0Aa 2066.1Aa 4388.8ABab 213.5ABb 5 40 1413.9Aa 3147.5Aa 223.6Aa 1611.2Aa 3886.6Aa 244.1Aa 2027.1Aa 4831.7Aa 247.2Aa 表 4 茎秆性状、抗倒伏性状与施氮量的相关关系
Table 4. Correlation coefficients between culm traits and lodging resistance with nitrogen application rates
节间 节间长 节间粗 茎秆壁厚 至穗顶高 至穗顶重 抗折力 弯曲力矩 倒伏指数 倒3节 0.7791 0.9602** 0.1491 0.9670** 0.9798** -0.9790** 0.9799** 0.9826** 倒4节 0.9319** 0.9645** -0.0548 0.9599** 0.9909** -0.9513** 0.9920** 0.9814** 倒5节 0.8958** 0.9956** -0.0293 0.9507** 0.9929** -0.9805** 0.9967** 0.9970** 注:*表示显著相关(P < 0.05), **表示极显著相关(P < 0.01)。 -
[1] 杨世民, 谢力, 郑顺林, 等.氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J].作物学报, 2009, 35(1):93-103. http://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200901014.htm [2] 李文熙.水稻倒伏的原因及危害的对策[J].韩国作物学会, 1991, 36(5):383-393. [3] 杨惠杰, 杨仁崔, 李义珍, 等.水稻茎秆性状与抗倒性的关系[J].福建农业学报, 2000, 15(2):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-FJNX200002000.htm [4] 钟代彬, 罗利军, 梅捍卫, 等.水稻主茎总叶数及其相关性状的QTL分析[J].中国水稻科学, 2001, 15(1):8-13. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK200101001.htm [5] 凌启鸿, 张洪程.稻作新理论[M].北京:科学出版社, 1994. [6] KOKUBO A, KUAISHI S, SAKURAI N.Culm strength of barley[J].Plant Physiology, 1989, 91:876-882. doi: 10.1104/pp.91.3.876 [7] KOKUBO A, SAKURAI N, KURAISHI S, et al.Culm brittleness of barley (Hordeum vulgare L.) Mutants is caused by smaller number of cellulose molecules in cell wall[J].Plant Physiology, 1991, 97(2):509-514. doi: 10.1104/pp.97.2.509 [8] QIAN Q, LI Y H, ZENG D L, et al.Isolation and genetic characterization of a fragile plant mutant[J].Chinese Science Bulletin, 2001, 46:2082-2085. doi: 10.1007/BF02901137 [9] LI Y H, QIAN Q, ZHOU Y H, et al.BRITTLE CULM1, Which Encodes a COBRA-Like Protein.Affects the Mechanical Properties 0f Rice Plants[J].Plant Cell, 2003, 15(9):2020-2031. doi: 10.1105/tpc.011775 [10] 华泽田, 郝宪彬, 沈枫, 等.东北地区超级杂交粳稻倒伏性状的研究[J].沈阳农业大学学报, 2003, 34(3):161-164. http://www.cnki.com.cn/Article/CJFDTOTAL-SYNY200303000.htm [11] 杨守仁.杨守仁水稻文选[M].沈阳:辽宁科学技术出版社, 1998. [12] 史春余, 金留福, 付金民.助壮素对水稻倒伏有关性状的影响[J].植物生理学通讯, 1996, 32(2):21-23. http://www.cnki.com.cn/Article/CJFDTOTAL-ZWSL199601005.htm [13] 戴元才, 刘襄.水稻化调后期防倒防早衰促早熟试验研究[J].安徽农业科学, 1996, (1):25-26. http://www.cnki.com.cn/Article/CJFDTOTAL-AHNY601.007.htm [14] 郭玉华, 朱四光, 张龙步.不同栽培条件对水稻茎秆生化成分的影响[J].沈阳农业大学学报, 2003, 34(2):89-91. http://www.cnki.com.cn/Article/CJFDTOTAL-SYNY200302002.htm [15] 饶玉春, 李跃, 董国军, 等.水稻抗倒伏研究进展[J].中国稻米, 2009, 15(6):15-19. http://www.cnki.com.cn/Article/CJFDTOTAL-DAOM200906006.htm [16] 濑古秀生.水稻の倒伏に关する研究[J].九州农试汇报, 1962, (7):419-495. [17] 杨长明, 杨林章, 颜建梅, 等.不同养分和水分管理模式对水稻抗倒伏能力的影响[J].应用生态学报, 2004, 15(4):646-650. http://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200404020.htm [18] 张忠旭, 陈温福, 杨振玉, 等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响[J].沈阳农业大学学报, 1999, 30(2):81-85. http://www.cnki.com.cn/Article/CJFDTOTAL-SYNY199902000.htm [19] 杨惠杰, 房贤涛, 何花榕, 等.福建超级稻品种茎秆性状与抗倒性及产量因子的关系[J].中国生态农业学报, 2012, 20(7):909-913. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201207018.htm [20] 赵雅静, 姜照伟, 李小萍, 等.优质稻佳辐占抗倒力与施氮量的关联性观察[J].福建稻麦科技, 2014, 32(3):10-12. http://www.cnki.com.cn/Article/CJFDTOTAL-FJDM201403005.htm [21] 王晓玲, 许凤英, 马国辉, 等.不同用量缓释氮对超级稻节间长度和抗倒性的影响[J].湖北农业科学, 2011, 50(3):472-475. http://www.cnki.com.cn/Article/CJFDTOTAL-HBNY201103014.htm [22] 王健, 朱锦懋, 林青青, 等.小麦茎秆结构和细胞壁化学成分对抗压强度的影响[J].科学通报, 2006, 51(6):679-685. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200606011.htm